阿霉素
体外
谷胱甘肽
结合
化学
生物物理学
药物输送
药理学
生物利用度
甘露糖
Zeta电位
生物化学
纳米颗粒
生物
纳米技术
材料科学
化疗
酶
有机化学
数学分析
遗传学
数学
作者
Xinxin Cui,Kunda Du,Xiaoyin Yuan,Xin Wen,Yayu Tao,Defeng Xu,Hang Hu
摘要
In this work, five Man-DOX conjugates with different linkers were developed for targeted DOX delivery. The five Man-DOX conjugates with different linkers were characterized by 1 H NMR, HRMS, HPLC, UV-vis, and fluorescence spectroscopy. Man-Suc-DOX, Man-TDG-DOX, and Man-DG-DOX can self-assemble into near-spherical nanoparticles with hydrodynamic diameters of 150-200 nm and negative zeta potentials in deionized water, whereas Man-SS-DOX and Man-SeSe-DOX are hardly dispersed in deionized water. The self-assembly behaviors of Man-Suc-DOX, Man-TDG-DOX, and Man-DG-DOX were studied by dissipative particle dynamics simulation and the results show that Man-Suc-DOX, Man-TDG-DOX, and Man-DG-DOX all self-assemble into spherical particles with Man and linkers on the surfaces and DOX in the interiors. The in vitro drug release study shows that Man-Suc-DOX, Man-TDG-DOX, and Man-DG-DOX exhibit limited drug release, while Man-SS-DOX and Man-SeSe-DOX exhibit glutathione-responsive drug release. The cellular uptake study shows that Man-DG-DOX exhibits the highest cellular uptake amount on HepG2 cells. Finally, Man-DG-DOX exhibits the best in vitro antitumor effect against HepG2 cells among the five Man-DOX conjugates with different linkers. Although the in vitro antitumor activity of Man-DG-DOX is still lower than free DOX, Man-DG-DOX shows significant selectivity toward HepG2 cells. Man-DG-DOX might achieve selective DOX delivery for mannose receptor overexpressed tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI