Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors

DNA甲基化 表观遗传学 甲基化 计算机科学 计算生物学 相关性 机器学习 DNA测序 生物 人工智能 数据挖掘 遗传学 DNA 数学 基因 基因表达 几何学
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 187-200
标识
DOI:10.1007/978-1-0716-1994-0_14
摘要

Recent research studies using epigenetic data have been exploring whether it is possible to estimate how old someone is using only their DNA. This application stems from the strong correlation that has been observed in humans between the methylation status of certain DNA loci and chronological age. While genome-wide methylation sequencing has been the most prominent approach in epigenetics research, recent studies have shown that targeted sequencing of a limited number of loci can be successfully used for the estimation of chronological age from DNA samples, even when using small datasets. Following this shift, the need to investigate further into the appropriate statistics behind the predictive models used for DNA methylation-based prediction has been identified in multiple studies. This chapter will look into an example of basic data manipulation and modeling that can be applied to small DNA methylation datasets (100–400 samples) produced through targeted methylation sequencing for a small number of predictors (10–25 methylation sites). Data manipulation will focus on converting the obtained methylation values for the different predictors to a statistically meaningful dataset, followed by a basic introduction into importing such datasets in R, as well as randomizing and splitting into appropriate training and test sets for modeling. Finally, a basic introduction to R modeling will be outlined, starting with feature selection algorithms and continuing with a simple modeling example (linear model) as well as a more complex algorithm (Support Vector Machine).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助guanhuihui采纳,获得10
刚刚
小马甲应助guanhuihui采纳,获得10
刚刚
TYMX完成签到,获得积分10
刚刚
刚刚
水水发布了新的文献求助10
刚刚
刚刚
1秒前
luyunxing完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助满意大门采纳,获得10
1秒前
日照金峰完成签到,获得积分10
1秒前
大鱼吃小鱼完成签到,获得积分10
1秒前
屋子完成签到,获得积分10
1秒前
晚晚完成签到,获得积分10
2秒前
FashionBoy应助lion采纳,获得10
2秒前
默默白开水完成签到 ,获得积分10
2秒前
小蘑菇应助沉静的八宝粥采纳,获得10
3秒前
3秒前
豆子完成签到,获得积分10
3秒前
知识四面八方来完成签到 ,获得积分10
3秒前
鉨汏闫发布了新的文献求助10
3秒前
chemhub完成签到,获得积分10
4秒前
黑糖完成签到,获得积分10
4秒前
沙一汀绯闻女友完成签到,获得积分10
4秒前
4秒前
隐形之玉完成签到,获得积分10
4秒前
吐丝麵包发布了新的文献求助10
4秒前
默默的不二完成签到,获得积分10
5秒前
善学以致用应助linalian采纳,获得10
5秒前
5秒前
圆梦完成签到,获得积分10
6秒前
苏日古嘎发布了新的文献求助10
6秒前
zzz发布了新的文献求助20
6秒前
派大星完成签到 ,获得积分10
6秒前
6秒前
冷静的方盒完成签到,获得积分10
6秒前
aaaaaa完成签到,获得积分10
7秒前
拼搏的访天完成签到,获得积分10
7秒前
段晓坤完成签到,获得积分20
7秒前
贺光萌完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415