Quantitative Cystocele Assessment in Clinical Pelvic Floor Ultrasound Diagnosis

医学 尿道 盆底 超声波 放射科 外科
作者
Nan Bao,S Chen,Meng‐Qiu Dong,Zhu Guangyu,Hong Li,Xinlu Wang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag]
标识
DOI:10.1055/a-2589-7938
摘要

Purpose: Cystocele is a pelvic floor dysfunction disease prone to occur in women after childbirth. As the most commonly used examination method, the accuracy of pelvic floor ultrasound diagnosis is influenced by subjective factors such as doctor experience and fatigue level, making it challenging to achieve high accuracy, consistency, and repeatability of diagnosis. This study aims to propose a high-precision and fully automatic cystocele evaluation method based on pelvic floor ultrasound video images. Materials and Methods: This study retrospectively collected pelvic floor ultrasound images of 158 female G1P1 (first gestation and first parturition) patients from 2020 to 2024. According to the the ultrasound diagnosis of two senior doctors as the standard, 81 cystoceles and 66 non-cystocele patients were enrolled. Firstly, the ResNet34-UNet was used for automatic urethra segmentation. Then, key points were generated based on the automatically extracted urethra centerline. Features such as urethral key point displacement, urethral curvature change, and urethral inclination angles and their change were extracted for patients between rest and maximum Valsalva states. The support vector machine (SVM) classification model was used for cystocele prediction. Results: This study constructed two classification models to predict cystocele. One extracted the above features based on the automatic urethra segmention, while the other extracted them based on the doctor-annotated urethra. The experimental results show that both models have achieved good prediction results, with AUCs of 91.37% and 98.58%, respectively. Model performance based on the urethral image delineated by the doctor is better, with an AUC improvement of 7.21% on the independent test set. Conclusion: The proposed method can achieve high-precision, repeatable, fully automatic quantitative cystocele evaluation in pelvic floor ultrasound examinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧歌发布了新的文献求助10
刚刚
1秒前
舒心的银耳汤完成签到,获得积分20
1秒前
shuofeng完成签到 ,获得积分10
3秒前
笑傲完成签到,获得积分10
5秒前
fofo完成签到,获得积分10
7秒前
身处人海完成签到,获得积分10
7秒前
诚心谷南完成签到,获得积分10
9秒前
赘婿应助云云采纳,获得10
9秒前
nulinuli完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
母广明完成签到,获得积分10
13秒前
小莹子完成签到,获得积分10
15秒前
猪猪hero发布了新的文献求助10
16秒前
16秒前
喜悦的千万完成签到 ,获得积分10
21秒前
云云发布了新的文献求助10
22秒前
好好发布了新的文献求助10
23秒前
23秒前
hcsdgf完成签到 ,获得积分10
26秒前
27秒前
29秒前
学分完成签到 ,获得积分10
31秒前
wshwx发布了新的文献求助10
33秒前
guaishou完成签到,获得积分10
35秒前
空白完成签到 ,获得积分10
37秒前
wweiweili完成签到,获得积分10
37秒前
坦率的尔丝完成签到,获得积分10
39秒前
好好完成签到,获得积分10
43秒前
雾散完成签到,获得积分10
43秒前
47秒前
时雨完成签到 ,获得积分10
49秒前
1分钟前
默默向雪完成签到,获得积分0
1分钟前
刘小源完成签到 ,获得积分10
1分钟前
ffu完成签到 ,获得积分10
1分钟前
11122发布了新的文献求助10
1分钟前
打嗝死猫发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776410
求助须知:如何正确求助?哪些是违规求助? 3321809
关于积分的说明 10207979
捐赠科研通 3037175
什么是DOI,文献DOI怎么找? 1666560
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872