Preoperative prediction of early recurrence in pancreatic cancer: A novel clinical–radiomics model

无线电技术 医学 胰腺癌 放射科 癌症 肿瘤科 内科学
作者
Yiting Xu,Ming Chen,Yang Chen,Zhihang Cai,Zimian Luo,Bin Wang,Gaowei Jin,Yangyang Wang,Xu Han,Xing Xue,Liying Liu,Pu Liu,Zhihao Ma,Huan Luo,Tingbo Liang,Qi Zhang
出处
期刊:International Journal of Cancer [Wiley]
卷期号:158 (1): 267-278 被引量:1
标识
DOI:10.1002/ijc.70142
摘要

Abstract Early postoperative recurrence critically impacts pancreatic ductal adenocarcinoma prognosis, yet comprehensive preoperative prediction models remain underexplored. In this two‐center retrospective study of 895 treatment‐naïve PDAC patients who underwent direct resection (training n = 567; internal validation n = 241; external validation n = 87), we defined early recurrence as tumor relapse within 6 months of surgery. We first built a clinical model using logistic regression to select clinical variables and a radiomics model by applying LASSO regression to features extracted from preoperative CT images, then combined these into an integrated clinical–radiomics model via logistic regression. Of the 895 patients (64.4% male; mean age 64.4 ± 8.7 years), 213 (23.8%) experienced early recurrence. Four clinical variables (gender, CA125, radiologic N stage, adjuvant treatment) and 29 radiomics features were selected for the final model, which achieved area under the curve values of 0.862 (95% CI 0.828–0.896) in the training cohort, 0.843 (0.785–0.901) in internal validation, and 0.848 (0.748–0.949) in external validation—each outperforming either the clinical or radiomics model alone. Stratified analyses confirmed robustness across subgroups, and patients classified as high risk by the model had significantly shorter disease‐free and overall survival (both p < .001). This clinical–radiomics model offers a preoperative tool to identify PDAC patients at high risk of early postoperative recurrence, thereby supporting personalized treatment planning beyond immediate surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYTYamede完成签到,获得积分10
刚刚
康康完成签到,获得积分10
刚刚
隐形曼青应助SYQ采纳,获得10
刚刚
激情的纲完成签到,获得积分10
1秒前
聪明的归尘完成签到,获得积分10
1秒前
1秒前
王木木完成签到,获得积分10
4秒前
影子完成签到,获得积分10
4秒前
铁手无情完成签到,获得积分10
5秒前
good233完成签到,获得积分10
5秒前
5秒前
Suniex完成签到,获得积分10
5秒前
笑羽完成签到,获得积分0
6秒前
包包琪完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
曹博完成签到,获得积分10
7秒前
7秒前
Endeavor完成签到,获得积分10
7秒前
尔东先生完成签到,获得积分10
8秒前
JamesPei应助蓦然采纳,获得10
8秒前
炳灿完成签到 ,获得积分10
8秒前
Mmoler完成签到 ,获得积分10
9秒前
sky木槿完成签到 ,获得积分10
9秒前
李佳慧完成签到,获得积分10
9秒前
跳跃的亦寒完成签到,获得积分10
9秒前
轻松叫兽完成签到,获得积分10
9秒前
狗头发布了新的文献求助10
11秒前
nglmy77完成签到 ,获得积分10
11秒前
愉快天与完成签到,获得积分10
11秒前
12秒前
正版西瓜太妹完成签到,获得积分10
12秒前
lyl完成签到,获得积分10
13秒前
SY15732023811完成签到 ,获得积分10
13秒前
xn发布了新的文献求助10
13秒前
Lc完成签到,获得积分10
13秒前
niuzai完成签到,获得积分10
14秒前
科研通AI6应助lolo采纳,获得10
14秒前
Chemistry完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175309
求助须知:如何正确求助?哪些是违规求助? 4364649
关于积分的说明 13587175
捐赠科研通 4213736
什么是DOI,文献DOI怎么找? 2311201
邀请新用户注册赠送积分活动 1310211
关于科研通互助平台的介绍 1258224