亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ingredient Prediction via Context Learning Network With Class-Adaptive Asymmetric Loss

成分 背景(考古学) 活性成分 人工智能 计算机科学 机器学习 构造(python库) 食品科学 医学 古生物学 化学 药理学 生物 程序设计语言
作者
Mengjiang Luo,Weiqing Min,Zhiling Wang,Jiajun Song,Shuqiang Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 5509-5523 被引量:5
标识
DOI:10.1109/tip.2023.3318958
摘要

Ingredient prediction has received more and more attention with the help of image processing for its diverse real-world applications, such as nutrition intake management and cafeteria self-checkout system. Existing approaches mainly focus on multi-task food category-ingredient joint learning to improve final recognition by introducing task relevance, while seldom pay attention to making good use of inherent characteristics of ingredients independently. Actually, there are two issues for ingredient prediction. First, compared with fine-grained food recognition, ingredient prediction needs to extract more comprehensive features of the same ingredient and more detailed features of various ingredients from different regions of the food image. Because it can help understand various food compositions and distinguish the differences within ingredient features. Second, the ingredient distributions are extremely unbalanced. Existing loss functions can not simultaneously solve the imbalance between positive-negative samples belonging to each ingredient and significant differences among all classes. To solve these problems, we propose a novel framework named Class-Adaptive Context Learning Network (CACLNet) for ingredient prediction. In order to extract more comprehensive and detailed features, we introduce Ingredient Context Learning (ICL) to reduce the negative impact of complex background in food images and construct internal spatial connections among ingredient regions of food objects in a self-supervised manner, which can strengthen the contacts of the same ingredients through region interactions. In order to solve the imbalance of different classes among ingredients, we propose one novel Class-Adaptive Asymmetric Loss (CAAL) to focus on various ingredient classes adaptively. Besides, considering that the over-suppression of negative samples will over-fit positive samples of those rare ingredients, CAAL alleviates this continuous suppression according to the imbalanced ratios based on gradients while maintaining the contribution of positive samples by lesser suppression. Extensive evaluation on two popular benchmark datasets (Vireo Food-172, UEC Food-100) demonstrates our proposed method achieves the state-of-the-art performance. Further qualitative analysis and visualization show the effectiveness of our method. Code and models will be released upon publication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
Henwenwen6完成签到,获得积分10
3秒前
12秒前
斯文败类应助合适的破茧采纳,获得10
13秒前
汤汤完成签到 ,获得积分10
14秒前
青山完成签到 ,获得积分10
20秒前
24秒前
28秒前
29秒前
32秒前
Zachary发布了新的文献求助10
34秒前
35秒前
AA完成签到,获得积分10
35秒前
36秒前
兜兜完成签到,获得积分10
38秒前
兜兜发布了新的文献求助30
42秒前
yingying完成签到 ,获得积分10
53秒前
努力地小夏完成签到,获得积分10
55秒前
王炸完成签到,获得积分10
57秒前
shaylie完成签到 ,获得积分10
58秒前
dzh完成签到,获得积分20
59秒前
1分钟前
羞答答发布了新的文献求助10
1分钟前
英姑应助医学小牛马采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
大白菜芥末菜完成签到,获得积分10
1分钟前
Panther完成签到,获得积分10
1分钟前
1分钟前
Nomb1发布了新的文献求助10
1分钟前
轻松的曼冬完成签到,获得积分20
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
可爱的函函应助link采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502661
求助须知:如何正确求助?哪些是违规求助? 4598469
关于积分的说明 14464137
捐赠科研通 4532020
什么是DOI,文献DOI怎么找? 2483792
邀请新用户注册赠送积分活动 1467016
关于科研通互助平台的介绍 1439629