判别式
计算机科学
成对比较
度量空间
熵(时间箭头)
欧几里德距离
欧几里德几何
变压器
编码器
公制(单位)
人工智能
双曲函数
理论计算机科学
算法
数学
离散数学
数学分析
几何学
操作系统
量子力学
物理
经济
电压
运营管理
作者
Aleksandr Ermolov,Leyla Mirvakhabova,Valentin Khrulkov,Nicu Sebe,Ivan Oseledets
标识
DOI:10.1109/cvpr52688.2022.00726
摘要
Metric learning aims to learn a highly discriminative model encouraging the embeddings of similar classes to be close in the chosen metrics and pushed apart for dissimilar ones. The common recipe is to use an encoder to extract embeddings and a distance-based loss function to match the representations - usually, the Euclidean distance is utilized. An emerging interest in learning hyperbolic data embeddings suggests that hyperbolic geometry can be beneficial for natural data. Following this line of work, we propose a new hyperbolic-based model for metric learning. At the core of our method is a vision transformer with output embeddings mapped to hyperbolic space. These embeddings are directly optimized using modified pairwise cross-entropy loss. We evaluate the proposed model with six different formulations on four datasets achieving the new state-of-the-art performance. The source code is available at https://github.com/htdt/hyp_metric.
科研通智能强力驱动
Strongly Powered by AbleSci AI