蛋白质组学
生物
胚根
非生物胁迫
细胞生物学
拟南芥
信号转导
盐度
活性氧
植物
生物化学
生态学
发芽
基因
突变体
作者
Heng Zhang,Bing Han,Tai Wang,Sixue Chen,Haiying Li,Yuhong Zhang,Shaojun Dai
摘要
Soil salinity is a major abiotic stress that limits plant growth and agriculture productivity. To cope with salt stress, plants have evolved complex salt-responsive signaling and metabolic processes at the cellular, organ, and whole-plant levels. Investigation of the physiological and molecular mechanisms underlying plant salinity tolerance will provide valuable information for effective engineering strategies. Current proteomics provides a high-throughput approach to study sophisticated molecular networks in plants. In this review, we describe a salt-responsive protein database by an integrated analysis of proteomics-based studies. The database contains 2171 salt-responsive protein identities representing 561 unique proteins. These proteins have been identified from leaves, roots, shoots, seedlings, unicells, grains, hypocotyls, radicles, and panicles from 34 plant species. The identified proteins provide invaluable information toward understanding the complex and fine-tuned plant salt-tolerance mechanisms in photosynthesis, reactive oxygen species (ROS) scavenging, ion homeostasis, osmotic modulation, signaling transduction, transcription, protein synthesis/turnover, cytoskeleton dynamics, and cross-tolerance to different stress conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI