Innovative Immunoinformatics Tools for Enhancing MHC (Major Histocompatibility Complex) Class I Epitope Prediction in Immunoproteomics

表位 主要组织相容性复合体 计算生物学 MHC I级 计算机科学 鉴定(生物学) 表位定位 生物 人工智能 抗原 生物信息学 免疫学 植物
作者
Gomase VS,Rupali Sharma,Suchita P. Dhamane
出处
期刊:Protein and Peptide Letters [Bentham Science]
卷期号:32 (7): 465-489 被引量:2
标识
DOI:10.2174/0109298665373152250625054723
摘要

Immune responses depend on the identification and prediction of peptides that bind to MHC (major histocompatibility complex) class I molecules, especially when it comes to the creation of vaccines, cancer immunotherapy, and autoimmune disorders. The ability to predict and evaluate MHC class immunoproteomics have completely transformed I epitopes in conjunction with immunoinformatics technologies. However, precisely identifying epitopes across various populations and situations is extremely difficult due to the complexity and diversity of MHC class I binding peptides. The most recent developments in immunoinformatics technology that have improved MHC class I epitope prediction are examined in this article. The sensitivity and specificity of epitope prediction have been greatly enhanced by recent developments that have concentrated on bioinformatics algorithms, artificial intelligence, and machine learning models. Potential epitopes are predicted using large-scale peptide-MHC binding data, structural characteristics, and interaction dynamics using tools like NetMHC, IEDB, and MHCflurry. Additionally, the integration of proteomic, transcriptomic, and genomic data has improved prediction accuracy in real-world scenarios by enabling more accurate identification of naturally occurring peptides. Furthermore, newer techniques like deep learning and multi-omics data integration have the potential to overcome peptide binding prediction constraints. Utilizing these technologies is expected to speed up the identification of new epitopes, improve the accuracy of immunotherapy techniques, and enable customized vaccine development. These innovative techniques, their uses, and potential future developments for improving MHC class I epitope prediction in immunoproteomics are highlighted in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_nqv5WZ完成签到 ,获得积分10
2秒前
浮黎元始天尊完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
ding应助暴风少年采纳,获得10
3秒前
zxj完成签到 ,获得积分10
4秒前
4秒前
rfr完成签到,获得积分10
4秒前
顾太发布了新的文献求助10
5秒前
wen发布了新的文献求助10
6秒前
6秒前
是是是WQ完成签到 ,获得积分10
7秒前
lujiajia发布了新的文献求助10
8秒前
rfr发布了新的文献求助10
8秒前
9秒前
悠悠小土豆完成签到,获得积分10
9秒前
skbkbe完成签到 ,获得积分10
9秒前
11秒前
顾太完成签到,获得积分10
12秒前
13秒前
zxx完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
fruchtjelly完成签到,获得积分10
15秒前
99411发布了新的文献求助20
18秒前
18秒前
是是是WQ发布了新的文献求助10
18秒前
fruchtjelly发布了新的文献求助30
18秒前
量子星尘发布了新的文献求助10
18秒前
FashionBoy应助可耐的碧萱采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
lujiajia完成签到,获得积分10
20秒前
dadawang发布了新的文献求助10
20秒前
喵喵苗完成签到 ,获得积分10
21秒前
luxian完成签到,获得积分10
21秒前
科研通AI6.1应助fruchtjelly采纳,获得10
22秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785553
求助须知:如何正确求助?哪些是违规求助? 5688705
关于积分的说明 15467891
捐赠科研通 4914643
什么是DOI,文献DOI怎么找? 2645317
邀请新用户注册赠送积分活动 1593098
关于科研通互助平台的介绍 1547432