Duck Egg Crack Detection Using an Adaptive CNN Ensemble with Multi-Light Channels and Image Processing

规范化(社会学) 人工智能 自适应直方图均衡化 计算机科学 卷积神经网络 直方图 图像处理 计算机视觉 直方图均衡化 能见度 模式识别(心理学) 图像(数学) 地理 人类学 社会学 气象学
作者
Vasutorn Chaowalittawin,Woranidtha Krungseanmuang,Posathip Sathaporn,Boonchana Purahong
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (14): 7960-7960
标识
DOI:10.3390/app15147960
摘要

Duck egg quality classification is critical in farms, hatcheries, and salted egg processing plants, where cracked eggs must be identified before further processing or distribution. However, duck eggs present a unique challenge due to their white eggshells, which make cracks difficult to detect visually. In current practice, human inspectors use standard white light for crack detection, and many researchers have focused primarily on improving detection algorithms without addressing lighting limitations. Therefore, this paper presents duck egg crack detection using an adaptive convolutional neural network (CNN) model ensemble with multi-light channels. We began by developing a portable crack detection system capable of controlling various light sources to determine the optimal lighting conditions for crack visibility. A total of 23,904 images were collected and evenly distributed across four lighting channels (red, green, blue, and white), with 1494 images per channel. The dataset was then split into 836 images for training, 209 images for validation, and 449 images for testing per lighting condition. To enhance image quality prior to model training, several image pre-processing techniques were applied, including normalization, histogram equalization (HE), and contrast-limited adaptive histogram equalization (CLAHE). The Adaptive MobileNetV2 was employed to evaluate the performance of crack detection under different lighting and pre-processing conditions. The results indicated that, under red lighting, the model achieved 100.00% accuracy, precision, recall, and F1-score across almost all pre-processing methods. Under green lighting, the highest accuracy of 99.80% was achieved using the image normalization method. For blue lighting, the model reached 100.00% accuracy with the HE method. Under white lighting, the highest accuracy of 99.83% was achieved using both the original and HE methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助骏马奔驰采纳,获得10
刚刚
李想完成签到,获得积分10
刚刚
1秒前
小马甲应助迅速的丑采纳,获得10
1秒前
包元霜发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
呆萌晓丝发布了新的文献求助10
2秒前
531完成签到,获得积分10
4秒前
4秒前
6秒前
Owen应助apple红了采纳,获得10
7秒前
子车浩宇发布了新的文献求助10
7秒前
彭彭发布了新的文献求助10
7秒前
BINGBING1230发布了新的文献求助10
7秒前
清漪完成签到,获得积分10
7秒前
cf2v完成签到 ,获得积分0
9秒前
王肖宁发布了新的文献求助10
9秒前
9秒前
daomaihu完成签到,获得积分10
10秒前
浮游应助王嘉鑫采纳,获得10
11秒前
浮游应助王嘉鑫采纳,获得10
11秒前
yzy完成签到,获得积分10
12秒前
YXY发布了新的文献求助10
13秒前
充电宝应助陈骏康采纳,获得10
13秒前
young发布了新的文献求助10
14秒前
搜集达人应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
薄荷微凉发布了新的文献求助10
15秒前
wlscj应助科研通管家采纳,获得20
15秒前
Hello应助科研通管家采纳,获得10
16秒前
wlscj应助科研通管家采纳,获得20
16秒前
等待吐司应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
阿湫发布了新的文献求助10
16秒前
16秒前
倪文燕发布了新的文献求助500
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320866
求助须知:如何正确求助?哪些是违规求助? 4462645
关于积分的说明 13887494
捐赠科研通 4353689
什么是DOI,文献DOI怎么找? 2391305
邀请新用户注册赠送积分活动 1384987
关于科研通互助平台的介绍 1354747