已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Negative differential friction in van der Waals layered materials: The role of interlayer quasibonding repulsion

范德瓦尔斯力 堆积 材料科学 石墨烯 密度泛函理论 凝聚态物理 化学物理 纳米技术 物理 化学 量子力学 计算化学 分子 有机化学
作者
Xinyu Li,Xiaohuan Lv,Yuejiao Zhang,Yumeng Gao,Zhang Hu,Chendong Jin,Ruqian Lian,Ruining Wang,Peng-Lai Gong,Xingqiang Shi,Jiang-Long Wang
出处
期刊:Physical review [American Physical Society]
卷期号:109 (7) 被引量:2
标识
DOI:10.1103/physrevb.109.075431
摘要

The emergence of negative differential friction (NDF) in two-dimensional (2D) layered materials, which does not obey the classical Da Vinci--Amontons law of friction, has attracted much attention in recent years. Although there has been a great deal of study on NDF, a universal understanding for its appearance in 2D materials remains lacking. Here, we try to give general insights from the common existence of interlayer quasibonding (QB) interaction in 2D materials, which is usually a repulsion interaction for some typical 2D materials. Based on density-functional theory calculations, we study the friction of four homobilayers of 2D materials ($H$- and $R$-stacking $\mathrm{Mo}{\mathrm{S}}_{2}, h$-BN, and graphene) with increasing load. The interlayer QB repulsion becomes stronger as the normal load increases, which is beneficial to the appearance of NDF. The appearance of NDF can be attributed to the competition of (1) the relative rapid increase in the interlayer repulsion (which is correlated to interlayer QB) and (2) the relatively slow increase of the interlayer London dispersion attraction of van der Waals interaction. Further analysis manifests that the magnitude of the interlayer QB-induced splitting of energy bands is related to NDF, and then we provide a quantitative analysis of interlayer bonding strength to support this view. Since QB exists commonly in 2D layered materials, our insights are general and inspire perspectives on tuning the interlayer friction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知了完成签到 ,获得积分10
3秒前
Alvin发布了新的文献求助10
5秒前
6秒前
光亮的曼香完成签到,获得积分10
8秒前
A丫发布了新的文献求助10
9秒前
10秒前
南北完成签到 ,获得积分10
11秒前
12秒前
Alvin完成签到,获得积分10
15秒前
碗在水中央完成签到 ,获得积分10
15秒前
狄幼珊发布了新的文献求助10
15秒前
TongKY完成签到 ,获得积分10
16秒前
拓跋慕灵完成签到,获得积分10
22秒前
顾矜应助笑点低剑封采纳,获得10
22秒前
芒果布丁完成签到 ,获得积分10
23秒前
Hi完成签到 ,获得积分10
28秒前
30秒前
32秒前
GGGirafe发布了新的文献求助10
36秒前
36秒前
岁岁平安完成签到,获得积分10
39秒前
43秒前
能干凝冬完成签到,获得积分10
43秒前
GingerF应助科研通管家采纳,获得10
43秒前
GingerF应助科研通管家采纳,获得10
43秒前
GingerF应助科研通管家采纳,获得10
43秒前
GingerF应助科研通管家采纳,获得10
43秒前
香蕉觅云应助科研通管家采纳,获得10
43秒前
FashionBoy应助科研通管家采纳,获得20
43秒前
浮游应助科研通管家采纳,获得10
43秒前
脑洞疼应助科研通管家采纳,获得30
44秒前
47秒前
48秒前
49秒前
啾啾发布了新的文献求助10
51秒前
52秒前
Valrhona完成签到 ,获得积分10
55秒前
小蘑菇应助清脆泥猴桃采纳,获得10
56秒前
兴奋的若菱完成签到 ,获得积分10
56秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291051
求助须知:如何正确求助?哪些是违规求助? 4442208
关于积分的说明 13829504
捐赠科研通 4325125
什么是DOI,文献DOI怎么找? 2374008
邀请新用户注册赠送积分活动 1369374
关于科研通互助平台的介绍 1333502