Machine Learning of Histopathological Images Predicts Recurrences of Resected Pancreatic Ductal Adenocarcinoma With Adjuvant Treatment

医学 胰腺导管腺癌 腺癌 接收机工作特性 置信区间 癌胚抗原 病态的 内科学 胰腺癌 放射科 胃肠病学 肿瘤科 癌症
作者
Ruri Yamaguchi,Hiromu Morikawa,Jun Akatsuka,Yasushi Numata,Aya Noguchi,Takashi Kokumai,Masaharu Ishida,Masamichi Mizuma,Kei Nakagawa,Michiaki Unno,Akimitsu Miyake,Gen Tamiya,Yoichiro Yamamoto,Toru Furukawa
出处
期刊:Pancreas [Lippincott Williams & Wilkins]
卷期号:53 (2): e199-e204 被引量:3
标识
DOI:10.1097/mpa.0000000000002289
摘要

Objectives Pancreatic ductal adenocarcinoma is an intractable disease with frequent recurrence after resection and adjuvant therapy. The present study aimed to clarify whether artificial intelligence–assisted analysis of histopathological images can predict recurrence in patients with pancreatic ductal adenocarcinoma who underwent resection and adjuvant chemotherapy with tegafur/5-chloro-2,4-dihydroxypyridine/potassium oxonate. Materials and Methods Eighty-nine patients were enrolled in the study. Machine-learning algorithms were applied to 10-billion-scale pixel data of whole-slide histopathological images to generate key features using multiple deep autoencoders. Areas under the curve were calculated from receiver operating characteristic curves using a support vector machine with key features alone and by combining with clinical data (age and carbohydrate antigen 19-9 and carcinoembryonic antigen levels) for predicting recurrence. Supervised learning with pathological annotations was conducted to determine the significant features for predicting recurrence. Results Areas under the curves obtained were 0.73 (95% confidence interval, 0.59–0.87) by the histopathological data analysis and 0.84 (95% confidence interval, 0.73–0.94) by the combinatorial analysis of histopathological data and clinical data. Supervised learning model demonstrated that poor tumor differentiation was significantly associated with recurrence. Conclusions Results indicate that machine learning with the integration of artificial intelligence–driven evaluation of histopathological images and conventional clinical data provides relevant prognostic information for patients with pancreatic ductal adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bqin发布了新的文献求助10
2秒前
2秒前
2秒前
evilbatuu完成签到,获得积分10
2秒前
小马甲应助会飞的猪采纳,获得10
2秒前
精明松思完成签到,获得积分10
3秒前
4秒前
科研通AI5应助fanxiangli采纳,获得30
4秒前
殷勤的狗完成签到,获得积分10
5秒前
花痴的冰蓝完成签到,获得积分10
5秒前
芽芽发布了新的文献求助10
5秒前
Lucas应助跳跃的语柔采纳,获得10
5秒前
AAA完成签到,获得积分10
5秒前
Banff完成签到,获得积分10
5秒前
搞笑煎蛋完成签到 ,获得积分10
6秒前
6秒前
等光来发布了新的文献求助10
6秒前
bqin完成签到,获得积分10
6秒前
7秒前
称心的猪完成签到,获得积分10
7秒前
LSS发布了新的文献求助10
8秒前
平常的毛豆应助跳跳狗采纳,获得10
8秒前
8秒前
任生平完成签到,获得积分10
9秒前
Damiao完成签到,获得积分10
9秒前
共享精神应助Bruce Lin采纳,获得10
9秒前
思源应助山花鱼采纳,获得10
9秒前
愉快竺应助mmyhn采纳,获得10
9秒前
9秒前
HMMXC发布了新的文献求助10
10秒前
10秒前
ZZDXXX发布了新的文献求助10
10秒前
Rqbnicsp完成签到,获得积分10
10秒前
move发布了新的文献求助10
10秒前
咖飞完成签到,获得积分10
11秒前
11秒前
松鼠15111发布了新的文献求助10
12秒前
大个应助sweet采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817682
求助须知:如何正确求助?哪些是违规求助? 3360954
关于积分的说明 10410402
捐赠科研通 3079042
什么是DOI,文献DOI怎么找? 1690956
邀请新用户注册赠送积分活动 814272
科研通“疑难数据库(出版商)”最低求助积分说明 768068