FG-HFS: A feature filter and group evolution hybrid feature selection algorithm for high-dimensional gene expression data

特征(语言学) 特征选择 模式识别(心理学) 算法 滤波器(信号处理) 马尔可夫毯 聚类分析 计算机科学 人工智能 数学 马尔可夫链 机器学习 马尔可夫模型 哲学 语言学 马尔可夫性质 计算机视觉
作者
Zhaozhao Xu,Fangyuan Yang,Chaosheng Tang,Hong Wang,Shuihua Wang‎,Junding Sun,Yudong Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123069-123069 被引量:15
标识
DOI:10.1016/j.eswa.2023.123069
摘要

High dimensional and small samples characterize gene expression data and contain a large number of genes unrelated to disease. Feature selection improves the efficiency of disease diagnosis by selecting a small number of important genes. Unfortunately, existing algorithms do not consider the correlation between features, and search algorithms tend to fall into the local optimal solution in the feature search process. To this end, this paper proposes a feature filter and group evolution hybrid feature selection algorithm (FG-HFS) for high-dimensional gene expression data. Unlike existing algorithms, we propose using spectral clustering to group redundant features into a group. Then, we propose a redundant feature filter algorithm. According to the principle of approximate Markov blanket, grouped feature groups are filtered to delete these redundant features. Among them, filtered features are evenly divided by density according to the feature exponential strategy. Most importantly, we propose using the group evolution multi-objective genetic algorithm to search the filtered feature subsets and evaluate the candidate feature subsets according to the in-group and out-group so as to select the feature subsets with the highest accuracy and the least number. Experimental results show that the average accuracy (ACC) and Matthews correlation coefficient (MCC) indexes of the selected feature subsets (FSs) by the FG-HFS algorithm on 5 gene expression datasets are 92.76% and 88.76%, respectively, which are significantly better than the existing algorithms. In addition, the FSs and ACC/FSs indexes of the FG-HFS algorithm are also better than the existing algorithms, which fully proves the superiority of the FG-HFS algorithm. More importantly, the Wilcoxon and Friedman statistical experiments results show that the feature selection effect of FG-HFS algorithm is significantly better than that of existing algorithms, no matter in pairwise comparison or multiple comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁温柔发布了新的文献求助10
刚刚
Sam1357发布了新的文献求助10
刚刚
猪猪hero发布了新的文献求助10
3秒前
4秒前
湖蓝色完成签到,获得积分10
4秒前
ZSJ完成签到,获得积分10
7秒前
7秒前
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
11秒前
汉堡包应助667788采纳,获得10
12秒前
一一应助认真的海豚采纳,获得10
13秒前
快哉快哉完成签到,获得积分10
13秒前
15秒前
16秒前
纸包鱼发布了新的文献求助10
17秒前
隐形尔蝶完成签到 ,获得积分10
17秒前
fzhou完成签到 ,获得积分10
18秒前
djm完成签到,获得积分10
18秒前
湖蓝色发布了新的文献求助10
18秒前
失眠的艳一关注了科研通微信公众号
20秒前
20秒前
baifeng完成签到,获得积分10
21秒前
ZZX完成签到,获得积分10
22秒前
667788完成签到,获得积分10
23秒前
rd完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
26秒前
鱼yu发布了新的文献求助200
26秒前
667788发布了新的文献求助10
27秒前
hjyylab应助heli采纳,获得10
27秒前
庄庄发布了新的文献求助10
27秒前
31秒前
32秒前
LW完成签到,获得积分10
32秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839884
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521516
捐赠科研通 3101562
什么是DOI,文献DOI怎么找? 1708143
邀请新用户注册赠送积分活动 822228
科研通“疑难数据库(出版商)”最低求助积分说明 773208