BCAF-3D: Bilateral Content Awareness Fusion for cross-modal 3D object detection

点云 计算机科学 人工智能 激光雷达 目标检测 计算机视觉 特征(语言学) 公制(单位) 对象(语法) 情态动词 传感器融合 模态(人机交互) 模式识别(心理学) 遥感 地理 工程类 语言学 哲学 运营管理 化学 高分子化学
作者
Chen Mu,Pengfei Liu,Huaici Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:279: 110952-110952 被引量:2
标识
DOI:10.1016/j.knosys.2023.110952
摘要

As two major data modalities in autonomous driving, LiDAR point clouds and RGB images include rich geometric clues and semantic features. Compared with using a single data modality, fusing two data modalities can provide complementary information for the 3D object detection task. However, some prevalent cross-modal methods (Vora et al., 2020; Huang et al., 2020; Sindagi et al., 2019) cannot effectively obtain favorable information, and only adopt a unilateral fusion mechanism. In this paper, we propose a novel fusion strategy named Bilateral Content Awareness Fusion (BCAF) to address these issues. Specifically, BCAF adopts a two-stream structure consisting of a LiDAR Content Awareness (LCA) branch and an Image Content Awareness (ICA) branch along with a Soft Fusion (SF) module. First, the LCA and ICA are used to enhance instance-relevant clues. Then, with two awareness features given by the LCA and ICA branches, the aggregation features can be generated to choose favorable image features and LiDAR features. Finally, the SF module fuses the bilateral favorable features and outputs the cross-modal feature. Experiments of our method are conducted on the KITTI dataset, including 3D object detection evaluation and bird’s eye view evaluation. Compared with the previous art method, our approach achieves significant improvements. Especially for the metric of mean Average Precision (mAP) on the Car category, our approach obtains 0.5 and 0.62 gains for the tasks of 3D object detection and bird’s eye view, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助xie采纳,获得10
刚刚
SYLH应助wwss采纳,获得10
1秒前
传奇3应助离谱的月亮采纳,获得10
1秒前
SSS完成签到,获得积分10
1秒前
CY发布了新的文献求助10
1秒前
程雯慧发布了新的文献求助10
2秒前
2秒前
2秒前
Owen应助科学家采纳,获得10
2秒前
赘婿应助程程采纳,获得10
2秒前
2秒前
充电宝应助炙热灰狼采纳,获得10
3秒前
yayika发布了新的文献求助10
3秒前
wear88完成签到,获得积分10
6秒前
梨老师完成签到,获得积分10
6秒前
俭朴新之完成签到 ,获得积分10
7秒前
7秒前
蜡笔小新完成签到,获得积分10
7秒前
沉默芸发布了新的文献求助10
7秒前
7秒前
跳跃的惮发布了新的文献求助10
7秒前
XS_QI完成签到 ,获得积分10
8秒前
lamry完成签到,获得积分10
8秒前
8秒前
yc发布了新的文献求助10
8秒前
斯文败类应助忧虑的羊采纳,获得10
8秒前
9秒前
Ava应助Jinnan采纳,获得10
9秒前
rainhowk完成签到,获得积分10
9秒前
hellosci666完成签到,获得积分10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
10秒前
祖乐松完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Jasper应助lr采纳,获得10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868