Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer

成熟度 残余物 人工智能 规范化(社会学) 计算机科学 算法 模式识别(心理学) 数据挖掘 成熟 化学 食品科学 社会学 人类学
作者
Shizhong Yang,Wei Wang,Sheng Gao,Zhaopeng Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108360-108360 被引量:100
标识
DOI:10.1016/j.compag.2023.108360
摘要

Identifying the ripeness of strawberries can be challenging due to their complex growth environment, interference from light intensity, and shading caused by strawberry aggregation. To address these issues, this study aims to develop an algorithm for accurately detecting and classifying ripe strawberries. This study proposed a novel LS-YOLOv8s model for detecting and grading the ripeness of strawberries, which is based on the YOLOv8s deep learning algorithm and incorporates the LW-Swin Transformer module. To improve the performance of the model, two new random variables were introduced in the contrast enhancement process to control the enhancement effect. The dataset was expanded from 1089 to 7515 images, which increased the diversity of the data and reduced the risk of over fitting the model. Additionally, the Swin Transformer module was added to the TopDown Layer2 during the feature fusion stage to capture long distance dependencies in the input data and improve the generalization capability of the model with the use of a multi-headed self-attention mechanism. Finally, a more efficient feature fusion network was achieved by introducing a residual network with learnable parameters and scaled normalization into the original residual structure of the Swin Transformer. To evaluate the effectiveness of LS-YOLOv8s for strawberry ripeness detection, we collected a dataset of strawberry images from a strawberry planting base. The dataset was split using the 5-fold cross-validation approach, which improved the model evaluation process. Experimental results showed that LS-YOLOv8s better than other models, with a 1.6 %, 33.5 %, and 3.4 % improvement in mAP0.5 on the validation set compared to YOLOv5s, CenterNet, and SSD, respectively. Moreover, LS-YOLOv8s achieved better detection precision and speed than YOLOv8m with only approximately 51.93 % of the number of parameters used, achieving 94.4 % detection precision and 19.23fps detection speed, improving by 0.5 % and 6.56fps, respectively. The LS-YOLOv8s model can provide reliable theoretical support for detecting strawberry targets, evaluating their ripeness, and automating the strawberry picking process for orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴彦祖完成签到,获得积分10
刚刚
yu_jy完成签到,获得积分10
1秒前
脆脆鲨完成签到,获得积分10
1秒前
猫薄荷完成签到,获得积分20
2秒前
2秒前
村头的小卖部完成签到,获得积分10
2秒前
zt发布了新的文献求助10
2秒前
天天快乐应助psycho采纳,获得10
2秒前
AgAin发布了新的文献求助10
3秒前
123关闭了123文献求助
3秒前
3秒前
科研通AI6应助hxhcjdsg采纳,获得10
4秒前
Uranus发布了新的文献求助30
4秒前
4秒前
2027发布了新的文献求助10
4秒前
麦客完成签到,获得积分10
4秒前
领导范儿应助YXHTCM采纳,获得10
4秒前
dl1995发布了新的文献求助10
5秒前
5秒前
6秒前
keeryu完成签到,获得积分10
8秒前
SUDA完成签到,获得积分20
9秒前
苹果听枫完成签到,获得积分10
9秒前
靓丽的千山关注了科研通微信公众号
9秒前
9秒前
金元宝完成签到,获得积分10
9秒前
小蘑菇应助翻水水采纳,获得10
10秒前
顾矜应助时尚的幻柏采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
盐水鱼关注了科研通微信公众号
11秒前
脆脆鲨发布了新的文献求助10
11秒前
111发布了新的文献求助10
11秒前
典雅煎蛋完成签到,获得积分20
11秒前
wuyuzegang发布了新的文献求助10
12秒前
盐水鱼关注了科研通微信公众号
12秒前
13秒前
13秒前
啊实打实的完成签到,获得积分10
14秒前
jam发布了新的文献求助10
15秒前
李金奥完成签到 ,获得积分10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445655
求助须知:如何正确求助?哪些是违规求助? 4554886
关于积分的说明 14248876
捐赠科研通 4477167
什么是DOI,文献DOI怎么找? 2453241
邀请新用户注册赠送积分活动 1443922
关于科研通互助平台的介绍 1419974