Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer

成熟度 残余物 人工智能 规范化(社会学) 计算机科学 算法 模式识别(心理学) 数据挖掘 成熟 化学 食品科学 社会学 人类学
作者
Shizhong Yang,Wei Wang,Sheng Gao,Zhaopeng Deng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108360-108360 被引量:34
标识
DOI:10.1016/j.compag.2023.108360
摘要

Identifying the ripeness of strawberries can be challenging due to their complex growth environment, interference from light intensity, and shading caused by strawberry aggregation. To address these issues, this study aims to develop an algorithm for accurately detecting and classifying ripe strawberries. This study proposed a novel LS-YOLOv8s model for detecting and grading the ripeness of strawberries, which is based on the YOLOv8s deep learning algorithm and incorporates the LW-Swin Transformer module. To improve the performance of the model, two new random variables were introduced in the contrast enhancement process to control the enhancement effect. The dataset was expanded from 1089 to 7515 images, which increased the diversity of the data and reduced the risk of over fitting the model. Additionally, the Swin Transformer module was added to the TopDown Layer2 during the feature fusion stage to capture long distance dependencies in the input data and improve the generalization capability of the model with the use of a multi-headed self-attention mechanism. Finally, a more efficient feature fusion network was achieved by introducing a residual network with learnable parameters and scaled normalization into the original residual structure of the Swin Transformer. To evaluate the effectiveness of LS-YOLOv8s for strawberry ripeness detection, we collected a dataset of strawberry images from a strawberry planting base. The dataset was split using the 5-fold cross-validation approach, which improved the model evaluation process. Experimental results showed that LS-YOLOv8s better than other models, with a 1.6 %, 33.5 %, and 3.4 % improvement in mAP0.5 on the validation set compared to YOLOv5s, CenterNet, and SSD, respectively. Moreover, LS-YOLOv8s achieved better detection precision and speed than YOLOv8m with only approximately 51.93 % of the number of parameters used, achieving 94.4 % detection precision and 19.23fps detection speed, improving by 0.5 % and 6.56fps, respectively. The LS-YOLOv8s model can provide reliable theoretical support for detecting strawberry targets, evaluating their ripeness, and automating the strawberry picking process for orchard management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fogsea完成签到,获得积分0
2秒前
是我不得开心妍完成签到 ,获得积分10
3秒前
Kair完成签到 ,获得积分10
5秒前
虚幻元风完成签到 ,获得积分10
5秒前
Hank完成签到 ,获得积分10
13秒前
崔宁宁完成签到 ,获得积分10
15秒前
开心夏旋完成签到 ,获得积分10
22秒前
22秒前
聪明的行云完成签到 ,获得积分10
23秒前
郝君颖完成签到 ,获得积分10
23秒前
Boris完成签到 ,获得积分10
24秒前
bing完成签到 ,获得积分10
31秒前
中恐完成签到,获得积分10
32秒前
清嘉完成签到,获得积分10
33秒前
sowhat完成签到 ,获得积分10
42秒前
GQ完成签到,获得积分10
48秒前
云飞扬完成签到 ,获得积分10
1分钟前
顺利的曼寒完成签到 ,获得积分10
1分钟前
子蓼完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
易哲完成签到 ,获得积分10
1分钟前
wx1完成签到 ,获得积分0
1分钟前
蝌蚪完成签到,获得积分10
1分钟前
苏青舟完成签到 ,获得积分10
1分钟前
jameslee04完成签到 ,获得积分10
1分钟前
fusheng完成签到 ,获得积分10
1分钟前
lyp完成签到 ,获得积分10
1分钟前
研友_LOKXmL完成签到 ,获得积分10
1分钟前
浮生完成签到 ,获得积分10
1分钟前
gaoxiaogao完成签到 ,获得积分10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
luckygirl完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
2分钟前
开放访天完成签到 ,获得积分10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
严珍珍完成签到 ,获得积分10
2分钟前
南风完成签到 ,获得积分10
2分钟前
GG完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709863
关于积分的说明 7418267
捐赠科研通 2354446
什么是DOI,文献DOI怎么找? 1246020
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921