Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning

计算机科学 学习迁移 卷积神经网络 人工智能 超参数 稳健性(进化) 机器学习 健康状况 电压 杠杆(统计) 工程类 电池(电) 化学 生物化学 功率(物理) 物理 量子力学 电气工程 基因
作者
Shaowen Zhang,Haiping Zhu,Jun Wu,Zhipeng Chen
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:73: 108579-108579 被引量:39
标识
DOI:10.1016/j.est.2023.108579
摘要

Convenient and accurate state-of-health (SOH) estimation of lithium-ion batteries (LIBs) is crucial for the security of energy storage systems. However, it is a challenging task to estimate the SOH of LIB due to complex cycling conditions and limited training data. The inputs of most existing methods cannot always be satisfied under complex cycle conditions, as cycle conditions may change anytime, especially during dynamic discharge processes. Thus, we propose a new end-to-end SOH estimation method based on relaxation voltage that is not dependent on specific cycling conditions. Specifically, the relaxation voltage profiles at the end of fully charging are input to a one-dimensional convolutional neural network (CNN) to estimate SOH directly. Transfer learning is adopted to leverage the source domain knowledge to the target domain to solve the issue of limited data. Moreover, the most promising CNN hyperparameters are determined automatically by the Bayesian optimization algorithm (BOA) during the pre-training and transfer learning. The accuracy and robustness of the proposed method are verified on two publicly available datasets consisting of 121 and 4 commercial cells, respectively, with a real-driving discharge profile. The root-mean-square errors of the proposed method are 0.0128 and 0.0092, respectively, with only 1.5 % and 10 % training data from the two target domains. The method has a high potential for online applications with preferable accuracy and computational performance. Our work highlights the effectiveness and generalizability of the end-to-end LIBs SOH estimation method based on easily accessible relaxation voltage profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助柳煜城采纳,获得20
刚刚
万能图书馆应助0227Y采纳,获得30
1秒前
123完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI5应助黄花采纳,获得10
2秒前
爆米花应助kinoko采纳,获得10
3秒前
way完成签到,获得积分10
3秒前
3秒前
Chuanxin完成签到,获得积分10
3秒前
4秒前
科研通AI5应助liulk采纳,获得10
4秒前
4秒前
华仔应助hhhh_xt采纳,获得30
6秒前
吕坏完成签到,获得积分10
6秒前
6秒前
6秒前
无花果应助严不平采纳,获得10
7秒前
7秒前
枯荣完成签到,获得积分10
7秒前
lixiaofan发布了新的文献求助10
7秒前
8秒前
Zero完成签到,获得积分10
9秒前
CaiLing发布了新的文献求助10
9秒前
JamesPei应助Dr. LJ采纳,获得30
9秒前
9秒前
9秒前
DOZEN发布了新的文献求助10
9秒前
shaylie发布了新的文献求助50
10秒前
10秒前
欢迎欢迎完成签到,获得积分10
10秒前
宜醉宜游宜睡应助pp采纳,获得10
11秒前
Arno完成签到,获得积分10
11秒前
12秒前
F_echo发布了新的文献求助10
12秒前
汪海洋完成签到 ,获得积分10
12秒前
13秒前
花生发布了新的文献求助10
13秒前
ange发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5022847
求助须知:如何正确求助?哪些是违规求助? 4260538
关于积分的说明 13278261
捐赠科研通 4066976
什么是DOI,文献DOI怎么找? 2224425
邀请新用户注册赠送积分活动 1233322
关于科研通互助平台的介绍 1157255