Visual Prediction of the Progression of Spinocerebellar Ataxia Type 3 Based on Machine Learning

脊髓小脑共济失调 马查多-约瑟夫病 共济失调 评定量表 内科学 机器学习 人工智能 医学 心理学 疾病 计算机科学 发展心理学 神经科学
作者
Danlei Ru,Jinchen Li,Linliu Peng,Hong Jiang,Rong Qiu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (10): 830-841
标识
DOI:10.2174/1574893618666230710140505
摘要

Background: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a clinically heterogeneous and progressive condition. Evaluation of its progression will contribute to clinical management and genetic counseling. Objective: The objective of this study was to provide a visualized interpretable prediction of the progression of SCA3/MJD based on machine learning (ML) methods. Methods: A total of 716 patients with SCA3/MJD were included in this study. The International Cooperative Ataxia Rating Scale (ICARS) and Scale for the Assessment and Rating of Ataxia (SARA) scores were used to quantitatively assess disease progression in the patients. Clinical and genotype information were collected as factors for predicting progression. Prediction models were constructed with ML algorithms, and the prediction results were then visualized to facilitate personalizing of clinical consultation. Results: The CAG repeat length of ATXN3 and its product with age, the duration of disease, and age were identified as the 4 most important factors for predicting the severity and progression of SCA3/MJD. The SVM-based model achieved the best performance in predicting the total ICARS and SARA scores, with accuracy (10%) values of 0.7619 for the SARA and 0.7042 for the ICARS. To visualize the predictions, line charts were used to show the expected progression over the next decade, and radar charts were used to show the scores of each part of the ICARS and SARA separately. Conclusion: We are the first group to apply ML algorithms to predict progression in SCA3/MJD and achieved desirable results. Visualization provided personalized predictions for each sample and can aid in developing clinical counseling regimens in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷向薇完成签到,获得积分10
刚刚
Aries完成签到,获得积分10
2秒前
5秒前
kk2024驳回了桐桐应助
6秒前
无头人完成签到 ,获得积分10
9秒前
CRSG发布了新的文献求助10
11秒前
12秒前
科研通AI5应助小石头采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
张彩红完成签到,获得积分10
14秒前
英姑应助科研通管家采纳,获得20
14秒前
残幻应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
呆萌的雁荷完成签到,获得积分10
15秒前
15秒前
shaw完成签到,获得积分10
15秒前
17秒前
科研通AI5应助小医生采纳,获得10
17秒前
momo完成签到,获得积分10
19秒前
20秒前
22秒前
孟子豪发布了新的文献求助10
22秒前
Chengcheng发布了新的文献求助10
23秒前
NexusExplorer应助小猞猁采纳,获得10
24秒前
April发布了新的文献求助10
25秒前
25秒前
25秒前
热心书易完成签到,获得积分10
25秒前
mov完成签到,获得积分10
25秒前
Lea应助古炮采纳,获得50
26秒前
苏颜鱼发布了新的文献求助10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842773
求助须知:如何正确求助?哪些是违规求助? 3384782
关于积分的说明 10537332
捐赠科研通 3105356
什么是DOI,文献DOI怎么找? 1710232
邀请新用户注册赠送积分活动 823561
科研通“疑难数据库(出版商)”最低求助积分说明 774137