Clinical knowledge embedded method based on multi-task learning for thyroid nodule classification with ultrasound images

计算机科学 人工智能 加权 机器学习 甲状腺结节 试验装置 任务(项目管理) 医学 放射科 恶性肿瘤 病理 管理 经济
作者
Zixiong Gao,Yufan Chen,Pengtao Sun,Hongmei Liu,Yao Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (4): 045018-045018 被引量:8
标识
DOI:10.1088/1361-6560/acb481
摘要

Objective. Thyroid nodules are common glandular abnormality that need to be diagnosed as benign or malignant to determine further treatments. Clinically, ultrasonography is the main diagnostic method, but it is highly subjective with severe variability. Recently, many deep-learning-based methods have been proposed to alleviate subjectivity and achieve good results yet, these methods often neglect important guidance from clinical knowledge. Our objective is to utilize such guidance for accurate and reliable thyroid nodule classification.Approach. In this study, a multi-task learning model embedded with clinical knowledge of ACR Thyroid Imaging, Reporting and Data System guideline is proposed. The clinical features defined in the guideline have strong correlations with malignancy and they were modeled as tasks alongside the pathological type. Multi-task learning was utilized to exploit the correlations to improve diagnostic performance. To alleviate the impact of noisy labels on clinical features, a loss-weighting strategy was proposed. Five-fold cross-validation was applied to an internal training set of size 4989, and an external test set of size 243 was used for evaluation.Main results. The proposed multi-task learning model achieved an average AUC of 0.901 and an ensemble AUC of 0.917 on the test set, which significantly outperformed the single-task baseline models.Significance. The results indicated that multi-task learning of clinical features can effectively classify thyroid nodules and reveal the possibility of using clinical indicators as auxiliary tasks to improve performance when diagnosing other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gy完成签到 ,获得积分10
1秒前
2秒前
浮黎元始天尊完成签到,获得积分10
3秒前
能干的山灵完成签到 ,获得积分10
5秒前
聪明的归尘完成签到,获得积分10
5秒前
WJ完成签到,获得积分10
5秒前
猪小猪完成签到,获得积分10
7秒前
8秒前
大力的安阳完成签到 ,获得积分10
8秒前
ccob完成签到,获得积分10
12秒前
善良的火完成签到 ,获得积分10
14秒前
18秒前
Lismart完成签到 ,获得积分10
19秒前
20秒前
泰山球迷完成签到,获得积分10
20秒前
善学以致用应助陈昭琼采纳,获得10
22秒前
开放青旋完成签到,获得积分10
24秒前
zbclzf完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
zhangxin完成签到,获得积分10
24秒前
小张吃不胖完成签到 ,获得积分10
24秒前
MAVS完成签到,获得积分10
25秒前
小瞎子_Zora完成签到 ,获得积分10
25秒前
26秒前
26秒前
山君完成签到 ,获得积分20
29秒前
30秒前
blackddl应助上山的吗喽采纳,获得10
31秒前
开心就吃猕猴桃完成签到,获得积分10
31秒前
汉堡包应助糖炒栗子采纳,获得10
34秒前
pjj完成签到 ,获得积分10
35秒前
Dali应助元谷雪采纳,获得10
35秒前
单薄广山完成签到,获得积分10
35秒前
36秒前
陈昭琼发布了新的文献求助10
36秒前
Serena完成签到 ,获得积分10
36秒前
Yenom完成签到 ,获得积分10
37秒前
38秒前
orixero应助尘默采纳,获得10
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603532
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854133
捐赠科研通 4693329
什么是DOI,文献DOI怎么找? 2540799
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806