Automated Pruning Decisions in Dormant Canopies using Instance Segmentation

修剪 人工智能 计算机科学 深度学习 分割 精确性和召回率 人工神经网络 过程(计算) 机器视觉 模式识别(心理学) 图像分割 机器学习 计算机视觉 农学 生物 操作系统
作者
Daniel Borrenpohl,Manoj Karkee
标识
DOI:10.13031/aim.202200952
摘要

Abstract. Pruning is an operation vital to orchard health and yield. However, pruning is also a laborious process requiring substantial human resources. As such, interest in automated pruning is growing. Automated pruning systems must possess robust machine vision capable of making proper pruning decisions. Deep neural networks are powerful tools for machine vision, and we demonstrate how deep neural networks can be used in an automated pruning system. A pruning rule in the UFO cherry architecture is to remove vigorous (or large diameter) leaders. Stereo images of UFO cherry trees were collected using active and natural lighting. Images were annotated for two classes of objects—trunks and leaders. Two instance segmentation networks (Mask R-CNN) were trained to detect leaders—one using active lighting images and one using natural lighting images. Deep stereo matching enabled generation of synthetic images to increase the size of our training dataset, and large learning rates were employed to accelerate learning (called super-convergence training). Predictions from the active and natural lighting Mask R-CNNs were compared to ground truth annotations for mask IoU, precision, recall, and probability of correctly identifying the largest leader. The active lighting Mask R-CNN demonstrated higher mask IoU, precision, recall, and probability of selecting the largest leader than the natural lighting Mask R-CNN. Overall, the active lighting Mask R-CNN correctly identified the largest leader in 94% of test images. Our results indicate instance segmentation is a robust approach to making automated pruning decisions in the UFO cherry architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
江文浩发布了新的文献求助10
3秒前
梅槿完成签到 ,获得积分10
4秒前
米米米发布了新的文献求助10
7秒前
忧郁的火车完成签到,获得积分10
7秒前
上官若男应助玊尔采纳,获得10
7秒前
原来完成签到,获得积分10
8秒前
birdy完成签到,获得积分10
9秒前
9秒前
奋斗橘子应助伍寒烟采纳,获得10
10秒前
望除应助米米米采纳,获得10
10秒前
彭于晏应助beichuanheqi采纳,获得10
12秒前
2316953734完成签到,获得积分10
13秒前
13秒前
一介草民谢尔比完成签到,获得积分10
14秒前
14秒前
HY发布了新的文献求助10
15秒前
科研通AI5应助liu采纳,获得10
15秒前
15秒前
15秒前
干净发布了新的文献求助10
18秒前
19秒前
玊尔发布了新的文献求助10
19秒前
科研通AI5应助YUANJIAHU采纳,获得10
21秒前
华青ww完成签到,获得积分10
22秒前
温超完成签到,获得积分10
24秒前
25秒前
云云完成签到 ,获得积分10
26秒前
默默的映天应助搞怪冬天采纳,获得10
26秒前
loen完成签到,获得积分10
26秒前
wangbq完成签到 ,获得积分10
27秒前
科研通AI5应助祯果粒采纳,获得10
28秒前
留胡子的寄瑶完成签到 ,获得积分10
31秒前
31秒前
32秒前
可爱的坤完成签到,获得积分10
33秒前
沉默的书桃完成签到 ,获得积分10
34秒前
35秒前
YUANJIAHU发布了新的文献求助10
36秒前
qi发布了新的文献求助10
37秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843860
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544206
捐赠科研通 3107013
什么是DOI,文献DOI怎么找? 1711358
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409