Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes

医学 多发性硬化 扩大残疾状况量表 内科学 胶质纤维酸性蛋白 病理 免疫学 免疫组织化学
作者
Gauruv Bose,Brian C. Healy,Shrishti Saxena,Fermisk Saleh,Anu Paul,Christian Barro,Hrishikesh Lokhande,Mariann Polgar-Turcsanyi,Mark Anderson,Bonnie I. Glanz,Charles R.G. Guttmann,Rohit Bakshi,Howard L. Weiner,Tanuja Chitnis
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:74: 104695-104695 被引量:1
标识
DOI:10.1016/j.msard.2023.104695
摘要

Early risk-stratification in multiple sclerosis (MS) may impact treatment decisions. Current predictive models have identified that clinical and imaging characteristics of aggressive disease are associated with worse long-term outcomes. Serum biomarkers, neurofilament (sNfL) and glial fibrillary acidic protein (sGFAP), reflect subclinical disease activity through separate pathological processes and may contribute to predictive models of clinical and MRI outcomes.We conducted a retrospective analysis of the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB study), where patients with multiple sclerosis are seen every 6 months and undergo Expanded Disability Status Scale (EDSS) assessment, have annual brain MRI scans where volumetric analysis is conducted to calculate T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and donate a yearly blood sample for subsequent analysis. We included patients with newly diagnosed relapsing-remitting MS and serum samples obtained at baseline visit and 1-year follow-up (both within 3 years of onset), and were assessed at 10-year follow-up. We measured sNfL and sGFAP by single molecule array at baseline visit and at 1-year follow-up. A predictive clinical model was developed using age, sex, Expanded Disability Status Scale (EDSS), pyramidal signs, relapse rate, and spinal cord lesions at first visit. The main outcome was odds of developing of secondary progressive (SP)MS at year 10. Secondary outcomes included 10-year EDSS, brain T2LV and BPF. We compared the goodness-of-fit of the predictive clinical model with and without sNfL and sGFAP at baseline and 1-year follow-up, for each outcome by area under the receiver operating characteristic curve (AUC) or R-squared.A total 144 patients with median MS onset at age 37.4 years (interquartile range: 29.4-45.4), 64% female, were included. SPMS developed in 25 (17.4%) patients. The AUC for the predictive clinical model without biomarker data was 0.73, which improved to 0.77 when both sNfL and sGFAP were included in the model (P = 0.021). In this model, higher baseline sGFAP associated with developing SPMS (OR=3.3 [95%CI:1.1,10.6], P = 0.04). Adding 1-year follow-up biomarker levels further improved the model fit (AUC = 0.79) but this change was not statistically significant (P = 0.15). Adding baseline biomarker data also improved the R-squared of clinical models for 10-year EDSS from 0.24 to 0.28 (P = 0.032), while additional 1-year follow-up levels did not. Baseline sGFAP was associated with 10-year EDSS (ß=0.58 [95%CI:0.00,1.16], P = 0.05). For MRI outcomes, baseline biomarker levels improved R-squared for T2LV from 0.12 to 0.27 (P<0.001), and BPF from 0.15 to 0.20 (P = 0.042). Adding 1-year follow-up biomarker data further improved T2LV to 0.33 (P = 0.0065) and BPF to 0.23 (P = 0.048). Baseline sNfL was associated with T2LV (ß=0.34 [95%CI:0.21,0.48], P<0.001) and 1-year follow-up sNfL with BPF (ß=-2.53% [95%CI:-4.18,-0.89], P = 0.003).Early biomarker levels modestly improve predictive models containing clinical and MRI variables. Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP levels and worse MRI outcomes, T2LV and BPF, are associated with higher sNfL levels. Prospective study implementing these predictive models into clinical practice are needed to determine if early biomarker levels meaningfully impact clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情孤丹完成签到,获得积分10
5秒前
6秒前
新楚完成签到 ,获得积分10
14秒前
吃小孩的妖怪完成签到 ,获得积分10
16秒前
wang5945完成签到 ,获得积分10
17秒前
gengsumin完成签到,获得积分10
20秒前
007完成签到 ,获得积分10
21秒前
key完成签到,获得积分10
28秒前
可爱的猪猪完成签到,获得积分10
28秒前
lhnsisi发布了新的文献求助30
31秒前
明某到此一游完成签到 ,获得积分10
31秒前
璇璇完成签到 ,获得积分10
32秒前
青羽落霞完成签到 ,获得积分10
35秒前
匆匆赶路人完成签到 ,获得积分10
37秒前
38秒前
Skye完成签到 ,获得积分10
38秒前
lifeng完成签到,获得积分20
40秒前
xcwy完成签到,获得积分10
40秒前
langlang发布了新的文献求助20
43秒前
慕青应助langlang采纳,获得20
48秒前
lhnsisi完成签到,获得积分10
48秒前
哇咔咔完成签到 ,获得积分10
58秒前
加减乘除完成签到 ,获得积分10
1分钟前
秋思冬念完成签到 ,获得积分10
1分钟前
1分钟前
xue112完成签到 ,获得积分10
1分钟前
1分钟前
周宇飞完成签到 ,获得积分10
1分钟前
langlang发布了新的文献求助20
1分钟前
minnie完成签到 ,获得积分10
1分钟前
也是难得取个名完成签到 ,获得积分10
1分钟前
会武功的阿吉完成签到,获得积分10
1分钟前
天涯完成签到 ,获得积分10
1分钟前
家立诚完成签到,获得积分10
1分钟前
JevonCheung完成签到 ,获得积分10
1分钟前
BAI_1完成签到,获得积分10
1分钟前
这课题真顺利完成签到,获得积分10
1分钟前
jue完成签到 ,获得积分10
1分钟前
独自受罪完成签到 ,获得积分10
1分钟前
凌兰完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779247
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220049
捐赠科研通 3039964
什么是DOI,文献DOI怎么找? 1668526
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503