The Future of Catalysis: Applying Graph Neural Networks for Intelligent Catalyst Design

催化作用 计算机科学 人工神经网络 图形 组合化学 化学 人工智能 理论计算机科学 有机化学
作者
Zhihao Wang,Wentao Li,Siying Wang,Xiaonan Wang
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:15 (2) 被引量:2
标识
DOI:10.1002/wcms.70010
摘要

ABSTRACT With the increasing global demand for energy transition and environmental sustainability, catalysts play a vital role in mitigating global climate change, as they facilitate over 90% of chemical and material conversions. It is important to investigate the complex structures and properties of catalysts for enhanced performance, for which artificial intelligence (AI) methods, especially graph neural networks (GNNs) could be useful. In this article, we explore the cutting‐edge applications and future potential of GNNs in intelligent catalyst design. The fundamental theories of GNNs and their practical applications in catalytic material simulation and inverse design are first reviewed. We analyze the critical roles of GNNs in accelerating material screening, performance prediction, reaction pathway analysis, and mechanism modeling. By leveraging graph convolution techniques to accurately represent molecular structures, integrating symmetry constraints to ensure physical consistency, and applying generative models to efficiently explore the design space, these approaches work synergistically to enhance the efficiency and accuracy of catalyst design. Furthermore, we highlight high‐quality databases crucial for catalysis research and explore the innovative application of GNNs in thermocatalysis, electrocatalysis, photocatalysis, and biocatalysis. In the end, we highlight key directions for advancing GNNs in catalysis: dynamic frameworks for real‐time conditions, hierarchical models linking atomic details to catalyst features, multi‐task networks for performance prediction, and interpretability mechanisms to reveal critical reaction pathways. We believe these advancements will significantly broaden the role of GNNs in catalysis science, paving the way for more efficient, accurate, and sustainable catalyst design methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助热心的早晨采纳,获得30
刚刚
打打应助Doctor采纳,获得10
1秒前
Owen应助高高听云采纳,获得10
2秒前
2秒前
科目三应助XuNan采纳,获得10
2秒前
YMY完成签到,获得积分10
4秒前
Xu完成签到,获得积分10
5秒前
哦啦啦发布了新的文献求助10
5秒前
5秒前
打打应助尹舸帆采纳,获得10
5秒前
6秒前
6秒前
Gz完成签到,获得积分20
6秒前
7秒前
LiuZhe发布了新的文献求助10
7秒前
阔达的扬完成签到,获得积分10
8秒前
9秒前
在水一方应助dd采纳,获得30
9秒前
酸甜完成签到,获得积分10
10秒前
tingyi完成签到,获得积分10
11秒前
12秒前
12秒前
斯文的捕发布了新的文献求助10
13秒前
外向青曼完成签到,获得积分10
13秒前
南风完成签到 ,获得积分10
14秒前
myg8627发布了新的文献求助10
14秒前
秀丽如音发布了新的文献求助10
14秒前
14秒前
15秒前
陈向阳发布了新的文献求助10
15秒前
旷野发布了新的文献求助10
16秒前
韩思凝完成签到,获得积分10
17秒前
科研通AI6应助外向青曼采纳,获得10
17秒前
BW完成签到,获得积分10
17秒前
读二白发布了新的文献求助10
19秒前
小宸子完成签到,获得积分10
19秒前
20秒前
20秒前
jiaming发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5040336
求助须知:如何正确求助?哪些是违规求助? 4271796
关于积分的说明 13318269
捐赠科研通 4083808
什么是DOI,文献DOI怎么找? 2234253
邀请新用户注册赠送积分活动 1241925
关于科研通互助平台的介绍 1168574