Parking demand forecasting based on improved complete ensemble empirical mode decomposition and GRU model

计算机科学 时间序列 需求预测 插值(计算机图形学) 模式(计算机接口) 交通拥挤 数据挖掘 运筹学 人工智能 机器学习 运输工程 数学 工程类 操作系统 运动(物理)
作者
Guangxin Li,Zhong Xiang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105717-105717 被引量:15
标识
DOI:10.1016/j.engappai.2022.105717
摘要

Parking demand forecasting plays an important role in relieving traffic congestion and reducing greenhouse gas emissions. However, most previous studies model based on historical data on parking itself or numerous factors that influences parking demand, which increase the complexity of the data and the time taken to run the model, resulting in a poor fit of the model to the extreme value points and not meeting the needs of practical applications. To address this issue, a hybrid prediction model based on improved complete ensemble empirical mode decomposition (ICEEMDAN) and gate recurrent unit (GRU) model for predicting parking demand, as well as a method called homogeneous linear mean interpolation to fill in the missing data were proposed in this paper. The ICEEMDAN algorithm was used to decompose the parking time series and reduce its complexity and nonlinearity. Based on the decomposed sequences, GRU neural networks were constructed for simultaneous training and prediction. Finally, the subsequences of the predicted output were aggregated. The effectiveness of the proposed model was validated using parking data collected from a large transportation hub parking lot. The experimental results show that compared with the single GRU model, the RMSE of the ICEEMDAN-GRU model is reduced by 59.29%, the MAE is reduced by 64.08%, and the R-square is improved by 4.93%. The ICEEMDAN-GRU model is the closest to the real parking time series. Therefore, this method is more effective than other models in parking demand forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮向露完成签到,获得积分10
刚刚
小茄子爷爷应助合适台灯采纳,获得30
刚刚
单hx发布了新的文献求助10
刚刚
一只小鲨鱼完成签到,获得积分10
1秒前
会爬树的鱼完成签到,获得积分10
2秒前
jack完成签到 ,获得积分10
2秒前
研友完成签到,获得积分10
2秒前
冷酷鱼完成签到 ,获得积分10
2秒前
清秀不言完成签到 ,获得积分10
3秒前
3秒前
lvlv发布了新的文献求助10
3秒前
小Q完成签到,获得积分10
4秒前
萧瑟处完成签到,获得积分10
5秒前
Kim_发布了新的文献求助10
5秒前
彭于彦祖应助376364743采纳,获得10
5秒前
高高电灯胆完成签到,获得积分10
6秒前
Hello应助深竹月采纳,获得10
6秒前
舒心之云完成签到,获得积分10
7秒前
合适台灯完成签到,获得积分10
7秒前
英俊的铭应助kyJYbs采纳,获得10
7秒前
Turew应助liutuotuo采纳,获得50
7秒前
9秒前
小可爱完成签到,获得积分10
9秒前
liuz完成签到,获得积分0
10秒前
安之完成签到,获得积分10
10秒前
11秒前
zhoulu关注了科研通微信公众号
12秒前
JamesPei应助yyk采纳,获得10
12秒前
07734完成签到,获得积分10
12秒前
丘比特应助yyymmma采纳,获得10
13秒前
11哥完成签到,获得积分10
13秒前
心想事陈完成签到,获得积分10
13秒前
彭于彦祖应助清修采纳,获得20
13秒前
13秒前
14秒前
shuofeng完成签到 ,获得积分10
14秒前
勤恳化蛹完成签到 ,获得积分10
14秒前
朔流而上完成签到,获得积分10
14秒前
大个应助2021采纳,获得10
16秒前
等待冬亦完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806