Development of machine learning based droplet diameter prediction model for electrohydrodynamic atomization systems

电流体力学 多物理 喷嘴 人工神经网络 非线性系统 电压 计算机科学 计算流体力学 机械工程 模拟 机械 人工智能 电场 工程类 物理 电气工程 结构工程 有限元法 量子力学
作者
Tao Dong,Jinxin Wang,Yong Wang,Guan-Hua Tang,Yongpan Cheng,Wei‐Cheng Yan
出处
期刊:Chemical Engineering Science [Elsevier BV]
卷期号:268: 118398-118398 被引量:16
标识
DOI:10.1016/j.ces.2022.118398
摘要

Due to the nature of complex multiphysics of electrohydrodynamic atomization (EHDA) system and the strong nonlinear relationship between process variables and droplet diameter, experiment-based trial and error and traditional numerical simulation have exhibited poor universality or low efficiency in analyzing such systems. In this study, an artificial neural network (ANN) model was developed to efficiently and accurately correlate the relationship between the EHDA process variables (nozzle diameter, conductivity, viscosity, dielectric constant, density, surface tension, flow rate, distance between the nozzle and the grounding electrode, and applied voltage) and droplet diameter. A database containing 8628 EHDA droplet diameter data points was collected and used for training the model. The results showed that the ANN model with 6 neurons could well predict the EHDA droplet diameter, which gives a high determination coefficient (R2) of 0.9998 and a low mean absolute error (MAE) of 0.0071. Impacts of feature inputs on the prediction performance were evaluated, suggesting that the solution properties and operating conditions should be considered as features inputs to ensure the prediction accuracy. CFD simulation was also conducted to compare efficiency and accuracy with the ANN model. Finally, the developed ANN model was used to investigate the effects of process variables. This study provides a powerful intelligent tool for efficient prediction of droplet size in EHDA systems in a green and sustainable way, which could be used in many research fields covering nanomaterial preparation, fuel spraying combustions, biomedical drug preparation, electric field assisted bioprinting etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栖遇完成签到 ,获得积分10
1秒前
1秒前
lijiajun完成签到,获得积分10
2秒前
luoyutian完成签到,获得积分10
4秒前
Jouleken完成签到,获得积分10
6秒前
文明8完成签到,获得积分10
7秒前
CTY236发布了新的文献求助10
7秒前
烟花应助aaaaarfv采纳,获得10
7秒前
yujia完成签到,获得积分10
9秒前
科研通AI2S应助zhuxd采纳,获得10
9秒前
11秒前
搜集达人应助yinshan采纳,获得30
11秒前
止戈为武完成签到,获得积分10
12秒前
赘婿应助deng203采纳,获得10
13秒前
orixero应助不想说话采纳,获得10
13秒前
感动的听荷完成签到,获得积分10
14秒前
qiao完成签到,获得积分10
14秒前
隐形曼青应助学术羊采纳,获得10
14秒前
15秒前
李浅墨完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
怡轻肝完成签到,获得积分10
16秒前
喜乐多完成签到 ,获得积分10
18秒前
xmz发布了新的文献求助20
18秒前
商毛毛发布了新的文献求助10
20秒前
登登完成签到,获得积分10
20秒前
Wangyingjie5发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
打我呀发布了新的文献求助10
23秒前
酷波er应助yyymmma采纳,获得10
24秒前
FJ完成签到,获得积分10
24秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
25秒前
YL完成签到,获得积分10
26秒前
曾丹么么哒完成签到,获得积分10
26秒前
27秒前
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790