清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Osteoporotic Precise Screening Using Chest Radiography and Artificial Neural Network: The OPSCAN Randomized Controlled Trial

医学 随机对照试验 射线照相术 放射科 医学物理学 物理疗法 外科
作者
Chin Lin,Dung-Jang Tsai,Chih‐Chia Wang,Yuan Ping Chao,Junwei Huang,Chin-Sheng Lin,Wen-Hui Fang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (3) 被引量:5
标识
DOI:10.1148/radiol.231937
摘要

Background Diagnosing osteoporosis is challenging due to its often asymptomatic presentation, which highlights the importance of providing screening for high-risk populations. Purpose To evaluate the effectiveness of dual-energy x-ray absorptiometry (DXA) screening in high-risk patients with osteoporosis identified by an artificial intelligence (AI) model using chest radiographs. Materials and Methods This randomized controlled trial conducted at an academic medical center included participants 40 years of age or older who had undergone chest radiography between January and December 2022 without a history of DXA examination. High-risk participants identified with the AI-enabled chest radiographs were randomly allocated to either a screening group, which was offered fully reimbursed DXA examinations between January and June 2023, or a control group, which received usual care, defined as DXA examination by a physician or patient on their own initiative without AI intervention. A logistic regression was used to test the difference in the primary outcome, new-onset osteoporosis, between the screening and control groups. Results Of the 40 658 enrolled participants, 4912 (12.1%) were identified by the AI model as high risk, with 2456 assigned to the screening group (mean age, 71.8 years ± 11.5 [SD]; 1909 female) and 2456 assigned to the control group (mean age, 72.1 years ± 11.8; 1872 female). A total of 315 of 2456 (12.8%) participants in the screening group underwent fully reimbursed DXA, and 237 of 315 (75.2%) were identified with new-onset osteoporosis. After including DXA results by means of usual care in both screening and control groups, the screening group exhibited higher rates of osteoporosis detection (272 of 2456 [11.1%] vs 27 of 2456 [1.1%]; odds ratio [OR], 11.2 [95% CI: 7.5, 16.7];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
sophia完成签到 ,获得积分10
11秒前
yy完成签到,获得积分10
12秒前
噗噗完成签到 ,获得积分10
18秒前
牛仔完成签到 ,获得积分10
20秒前
梦追阳完成签到 ,获得积分10
21秒前
享受不良诱惑完成签到,获得积分20
25秒前
zhaosiqi完成签到 ,获得积分10
26秒前
hi_traffic完成签到,获得积分10
27秒前
song完成签到 ,获得积分10
28秒前
点点完成签到 ,获得积分10
38秒前
研友_nEWRJ8完成签到,获得积分10
45秒前
嘚儿塔完成签到 ,获得积分10
49秒前
喜悦的香之完成签到 ,获得积分10
52秒前
huiluowork完成签到 ,获得积分10
53秒前
zhuosht完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
彭于晏应助兜兜采纳,获得30
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
炎炎夏无声完成签到 ,获得积分10
1分钟前
1分钟前
兜兜完成签到,获得积分10
1分钟前
暮晓见完成签到 ,获得积分10
1分钟前
兜兜发布了新的文献求助30
1分钟前
迷人面包完成签到,获得积分10
1分钟前
千帆破浪完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
缓慢的半莲完成签到 ,获得积分10
1分钟前
舒服的幼荷完成签到,获得积分10
1分钟前
卡卡罗特先森完成签到 ,获得积分10
2分钟前
yy完成签到 ,获得积分10
2分钟前
tianshanfeihe完成签到 ,获得积分10
2分钟前
002完成签到,获得积分10
2分钟前
浮游应助卓垚采纳,获得10
2分钟前
dagangwood完成签到 ,获得积分10
2分钟前
困困困完成签到 ,获得积分10
2分钟前
001完成签到,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4669114
求助须知:如何正确求助?哪些是违规求助? 4048855
关于积分的说明 12520886
捐赠科研通 3742206
什么是DOI,文献DOI怎么找? 2066748
邀请新用户注册赠送积分活动 1096175
科研通“疑难数据库(出版商)”最低求助积分说明 976504