Osteoporotic Precise Screening Using Chest Radiography and Artificial Neural Network: The OPSCAN Randomized Controlled Trial

医学 随机对照试验 射线照相术 放射科 医学物理学 物理疗法 外科
作者
Chin Lin,Dung-Jang Tsai,Chih‐Chia Wang,Yuan Ping Chao,Junwei Huang,Chin-Sheng Lin,Wen-Hui Fang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (3) 被引量:5
标识
DOI:10.1148/radiol.231937
摘要

Background Diagnosing osteoporosis is challenging due to its often asymptomatic presentation, which highlights the importance of providing screening for high-risk populations. Purpose To evaluate the effectiveness of dual-energy x-ray absorptiometry (DXA) screening in high-risk patients with osteoporosis identified by an artificial intelligence (AI) model using chest radiographs. Materials and Methods This randomized controlled trial conducted at an academic medical center included participants 40 years of age or older who had undergone chest radiography between January and December 2022 without a history of DXA examination. High-risk participants identified with the AI-enabled chest radiographs were randomly allocated to either a screening group, which was offered fully reimbursed DXA examinations between January and June 2023, or a control group, which received usual care, defined as DXA examination by a physician or patient on their own initiative without AI intervention. A logistic regression was used to test the difference in the primary outcome, new-onset osteoporosis, between the screening and control groups. Results Of the 40 658 enrolled participants, 4912 (12.1%) were identified by the AI model as high risk, with 2456 assigned to the screening group (mean age, 71.8 years ± 11.5 [SD]; 1909 female) and 2456 assigned to the control group (mean age, 72.1 years ± 11.8; 1872 female). A total of 315 of 2456 (12.8%) participants in the screening group underwent fully reimbursed DXA, and 237 of 315 (75.2%) were identified with new-onset osteoporosis. After including DXA results by means of usual care in both screening and control groups, the screening group exhibited higher rates of osteoporosis detection (272 of 2456 [11.1%] vs 27 of 2456 [1.1%]; odds ratio [OR], 11.2 [95% CI: 7.5, 16.7];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定自中发布了新的文献求助10
1秒前
李雨完成签到,获得积分10
1秒前
kiki完成签到,获得积分10
1秒前
Izzy完成签到 ,获得积分10
2秒前
陈槊诸完成签到 ,获得积分10
3秒前
3秒前
ruochenzu完成签到,获得积分10
3秒前
cc完成签到,获得积分10
3秒前
luck_wang发布了新的文献求助10
4秒前
slj完成签到,获得积分10
4秒前
4秒前
liu45kf完成签到,获得积分20
4秒前
4秒前
Firo完成签到,获得积分10
5秒前
5秒前
Shirley完成签到,获得积分10
5秒前
春风细雨发布了新的文献求助10
6秒前
Henry完成签到,获得积分10
6秒前
kelsey0821完成签到 ,获得积分10
6秒前
轻爱完成签到,获得积分10
7秒前
FKVB_完成签到 ,获得积分10
7秒前
谢丹完成签到 ,获得积分10
8秒前
朴实迎梅完成签到,获得积分10
8秒前
gao完成签到,获得积分10
8秒前
愉快豪完成签到 ,获得积分10
8秒前
dhfify发布了新的文献求助20
9秒前
Lily发布了新的文献求助10
9秒前
微笑的烨霖完成签到,获得积分10
9秒前
恶恶么v完成签到,获得积分10
9秒前
风趣的小甜瓜完成签到,获得积分10
9秒前
京城世界完成签到,获得积分10
9秒前
10秒前
Cristina2024完成签到,获得积分10
11秒前
小江的阿狸完成签到 ,获得积分10
11秒前
瞬光完成签到,获得积分10
11秒前
12秒前
十二平均律完成签到,获得积分10
12秒前
sduweiyu完成签到 ,获得积分10
12秒前
美好的凌晴完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5358458
求助须知:如何正确求助?哪些是违规求助? 4489594
关于积分的说明 13974558
捐赠科研通 4391418
什么是DOI,文献DOI怎么找? 2412444
邀请新用户注册赠送积分活动 1405051
关于科研通互助平台的介绍 1379635