亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Osteoporotic Precise Screening Using Chest Radiography and Artificial Neural Network: The OPSCAN Randomized Controlled Trial

医学 随机对照试验 射线照相术 放射科 医学物理学 物理疗法 外科
作者
Chin Lin,Dung-Jang Tsai,Chih‐Chia Wang,Yuan Ping Chao,Junwei Huang,Chin-Sheng Lin,Wen-Hui Fang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (3) 被引量:5
标识
DOI:10.1148/radiol.231937
摘要

Background Diagnosing osteoporosis is challenging due to its often asymptomatic presentation, which highlights the importance of providing screening for high-risk populations. Purpose To evaluate the effectiveness of dual-energy x-ray absorptiometry (DXA) screening in high-risk patients with osteoporosis identified by an artificial intelligence (AI) model using chest radiographs. Materials and Methods This randomized controlled trial conducted at an academic medical center included participants 40 years of age or older who had undergone chest radiography between January and December 2022 without a history of DXA examination. High-risk participants identified with the AI-enabled chest radiographs were randomly allocated to either a screening group, which was offered fully reimbursed DXA examinations between January and June 2023, or a control group, which received usual care, defined as DXA examination by a physician or patient on their own initiative without AI intervention. A logistic regression was used to test the difference in the primary outcome, new-onset osteoporosis, between the screening and control groups. Results Of the 40 658 enrolled participants, 4912 (12.1%) were identified by the AI model as high risk, with 2456 assigned to the screening group (mean age, 71.8 years ± 11.5 [SD]; 1909 female) and 2456 assigned to the control group (mean age, 72.1 years ± 11.8; 1872 female). A total of 315 of 2456 (12.8%) participants in the screening group underwent fully reimbursed DXA, and 237 of 315 (75.2%) were identified with new-onset osteoporosis. After including DXA results by means of usual care in both screening and control groups, the screening group exhibited higher rates of osteoporosis detection (272 of 2456 [11.1%] vs 27 of 2456 [1.1%]; odds ratio [OR], 11.2 [95% CI: 7.5, 16.7];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒远完成签到 ,获得积分10
2秒前
amengptsd完成签到,获得积分10
16秒前
豆壳儿完成签到 ,获得积分10
28秒前
开放笑天完成签到,获得积分10
31秒前
44秒前
科研通AI2S应助凡可可采纳,获得10
46秒前
陈一一完成签到 ,获得积分10
52秒前
1分钟前
水晶鞋完成签到 ,获得积分10
1分钟前
爆米花应助傲娇的曼香采纳,获得10
1分钟前
笨笨芯完成签到,获得积分10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
微信研友发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
纯真玉兰发布了新的文献求助10
1分钟前
桐桐应助瑜玦采纳,获得10
1分钟前
文静的立诚完成签到,获得积分10
1分钟前
背水完成签到 ,获得积分10
1分钟前
1分钟前
纯真玉兰完成签到,获得积分10
1分钟前
phentjn发布了新的文献求助10
1分钟前
1分钟前
瑜玦发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助傲娇的曼香采纳,获得10
2分钟前
2分钟前
微信研友完成签到,获得积分10
2分钟前
2分钟前
于洋完成签到 ,获得积分10
2分钟前
大大小完成签到,获得积分10
2分钟前
乐乐完成签到,获得积分10
2分钟前
610完成签到 ,获得积分10
3分钟前
Andy_2024发布了新的文献求助30
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468