Integrative single-cell analysis of LUAD: elucidating immune cell dynamics and prognostic modeling based on exhausted CD8+ T cells

肿瘤微环境 免疫系统 CD8型 列线图 腺癌 生物 癌症研究 免疫疗法 免疫学 医学 癌症 肿瘤科 遗传学
作者
Han Zhang,Pengpeng Zhang,Xuefeng Lin,Lin Tan,Yuhang Wang,Xiaoteng Jia,Kai Wang,Xin Li,Daqiang Sun
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15 被引量:4
标识
DOI:10.3389/fimmu.2024.1366096
摘要

Background The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD’s microenvironment. We underscored pDCs’ role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2’s function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccr02完成签到 ,获得积分10
1秒前
Lin应助Harlotte采纳,获得10
1秒前
慕豁发布了新的文献求助10
1秒前
好运来发布了新的文献求助10
1秒前
耍酷小白菜完成签到,获得积分10
2秒前
Soxiar完成签到 ,获得积分10
2秒前
wanci应助WHITE1采纳,获得10
3秒前
完美世界应助陈莳荃采纳,获得10
3秒前
掌心完成签到,获得积分10
4秒前
bo完成签到 ,获得积分10
5秒前
5秒前
pct发布了新的文献求助10
5秒前
星辰大海应助科研狂徒采纳,获得10
6秒前
乱武完成签到,获得积分10
6秒前
7秒前
shimmy完成签到,获得积分10
7秒前
阿尔卑斯完成签到,获得积分10
7秒前
7秒前
虚拟的惜筠完成签到,获得积分10
7秒前
8秒前
田様应助酒酿梅子采纳,获得10
8秒前
ygr完成签到,获得积分0
9秒前
Grace发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
huzj完成签到,获得积分10
10秒前
liangyong完成签到,获得积分10
10秒前
zsp完成签到,获得积分10
11秒前
12秒前
赘婿应助溪云采纳,获得10
12秒前
上官若男应助内向绮琴采纳,获得10
12秒前
12秒前
棒棒冰发布了新的文献求助10
12秒前
asdfg完成签到,获得积分10
13秒前
13秒前
13秒前
JamesPei应助小慧儿采纳,获得10
13秒前
13秒前
13秒前
13秒前
jon158发布了新的文献求助10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240