材料科学
兴奋剂
发光
光致发光
硅
光电子学
量子产额
量子点
量子效率
太阳能电池
电致发光
晶体硅
分析化学(期刊)
图层(电子)
纳米技术
光学
荧光
化学
有机化学
物理
作者
Pengjie Song,Shunnosuke Hase,Suling Zhao,Zheng Xu,Yoshiki Iso,Tetsuhiko Isobe
标识
DOI:10.1021/acsanm.1c04195
摘要
In order to enhance the photoelectric conversion efficiencies of crystalline silicon (c-Si) solar cells, CsPbCl3 quantum dots (QDs) codoped with Mn2+ and Er3+ (CsPbCl3:Mn2+, Er3+ QDs) were mixed with ethylene–(vinyl acetate) (EVA) to form a film which was used as a luminescent down-shifting (LDS) layer. The LDS layer effectively improved the low utilization of near-ultraviolet light of c-Si solar cells. These CsPbCl3:Mn2+,Er3+ QDs were synthesized via a conventional high-temperature injection method. Mn2+ is the luminescence center, and the incorporation of Er3+ greatly enhances the luminescence intensity of Mn2+. The absolute photoluminescence quantum yield of the QDs dispersed in toluene reached 79.5% when the QDs were synthesized under the optimum conditions, that is, an injection temperature of 180 °C and Pb:Mn:Er preparation molar ratios of 6:4:4. The EVA film embedded with QDs at the optimum concentration (0.9 wt %) was used as an LDS layer for c-Si solar module. The short-circuit current (ISC) and the photoelectric conversion efficiency (η) were increased by 3.42% and 4.02%, respectively, owing to the LDS layer. Moreover, a luminescent solar concentrator (LSC) which was another application of luminescent materials was also demonstrated. For LSC, the relative changes in ISC and η by using the QDs-dispersed EVA film were +14.9% and +18.0%, respectively. These results indicate a feasible application of luminescent downshifting films in solar modules.
科研通智能强力驱动
Strongly Powered by AbleSci AI