G-quadruplex DNA: a novel target for drug design

G-四倍体 DNA 表观遗传学 生物 DNA复制 解旋酶 基因组不稳定性 端粒 计算生物学 DNA修复 遗传学 DNA损伤 基因 核糖核酸
作者
Fangyuan Teng,Zongzhe Jiang,Man Guo,Xiaozhen Tan,Feng Chen,Xu‐Guang Xi,Yong Xu
出处
期刊:Cellular and Molecular Life Sciences [Springer Nature]
卷期号:78 (19-20): 6557-6583 被引量:72
标识
DOI:10.1007/s00018-021-03921-8
摘要

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wllllll发布了新的文献求助10
刚刚
1秒前
2秒前
故意的毛豆完成签到,获得积分10
3秒前
3秒前
小马甲应助嗯qq采纳,获得10
5秒前
LeungYM完成签到 ,获得积分10
5秒前
温暖草莓完成签到,获得积分20
6秒前
啊盘发布了新的文献求助10
7秒前
摇摇摇发布了新的文献求助10
8秒前
温暖草莓发布了新的文献求助10
9秒前
mandy完成签到,获得积分10
11秒前
科研通AI2S应助许安采纳,获得10
12秒前
14秒前
14秒前
reece完成签到 ,获得积分10
15秒前
15秒前
兔BF完成签到,获得积分10
16秒前
17秒前
小束爱吃樱桃完成签到,获得积分10
17秒前
AAAAA应助柴脱采纳,获得10
18秒前
18秒前
程程程发布了新的文献求助10
19秒前
19秒前
酷丫发布了新的文献求助10
19秒前
20秒前
雅哈发布了新的文献求助10
20秒前
21秒前
23秒前
24秒前
你说的完成签到 ,获得积分10
24秒前
光亮天蓉发布了新的文献求助10
25秒前
梅西完成签到 ,获得积分10
26秒前
SYLH应助啦啦啦采纳,获得10
26秒前
hazel发布了新的文献求助10
27秒前
28秒前
29秒前
111发布了新的文献求助10
29秒前
Hello应助什么采纳,获得10
31秒前
muyassar发布了新的文献求助10
33秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365991
关于积分的说明 10438472
捐赠科研通 3085147
什么是DOI,文献DOI怎么找? 1697192
邀请新用户注册赠送积分活动 816273
科研通“疑难数据库(出版商)”最低求助积分说明 769462