Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier

随机森林 特征选择 分类器(UML) 计算机科学 人工智能 机器学习 模式识别(心理学) 伪氨基酸组成 交叉验证 编码 马修斯相关系数 支持向量机 氨基酸 化学 生物化学 二肽 基因
作者
Cheng Chen,Qingmei Zhang,Bin Yu,Zhaomin Yu,Patrick J. Lawrence,Qin Ma,Yan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:123: 103899-103899 被引量:201
标识
DOI:10.1016/j.compbiomed.2020.103899
摘要

Protein-protein interactions (PPIs) are involved with most cellular activities at the proteomic level, making the study of PPIs necessary to comprehending any biological process. Machine learning approaches have been explored, leading to more accurate and generalized PPIs predictions. In this paper, we propose a predictive framework called StackPPI. First, we use pseudo amino acid composition, Moreau-Broto, Moran and Geary autocorrelation descriptor, amino acid composition position-specific scoring matrix, Bi-gram position-specific scoring matrix and composition, transition and distribution to encode biologically relevant features. Secondly, we employ XGBoost to reduce feature noise and perform dimensionality reduction through gradient boosting and average gain. Finally, the optimized features that result are analyzed by StackPPI, a PPIs predictor we have developed from a stacked ensemble classifier consisting of random forest, extremely randomized trees and logistic regression algorithms. Five-fold cross-validation shows StackPPI can successfully predict PPIs with an ACC of 89.27%, MCC of 0.7859, AUC of 0.9561 on Helicobacter pylori, and with an ACC of 94.64%, MCC of 0.8934, AUC of 0.9810 on Saccharomyces cerevisiae. We find StackPPI improves protein interaction prediction accuracy on independent test sets compared to the state-of-the-art models. Finally, we highlight StackPPI's ability to infer biologically significant PPI networks. StackPPI's accurate prediction of functional pathways make it the logical choice for studying the underlying mechanism of PPIs, especially as it applies to drug design. The datasets and source code used to create StackPPI are available here: https://github.com/QUST-AIBBDRC/StackPPI/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
DM完成签到,获得积分10
1秒前
2秒前
重要冰海发布了新的文献求助10
2秒前
科研通AI6应助Crisp采纳,获得10
3秒前
chenchen发布了新的文献求助10
3秒前
xiaoni完成签到,获得积分10
4秒前
DM发布了新的文献求助10
4秒前
ding应助云阳采纳,获得10
4秒前
SAAHOEL完成签到,获得积分10
5秒前
6秒前
6秒前
华仔应助悅悅采纳,获得10
7秒前
酷炫的毛巾发布了新的文献求助100
8秒前
小何发布了新的文献求助10
9秒前
9秒前
科目三应助飘逸踏歌采纳,获得10
9秒前
拉长的煎饼完成签到,获得积分20
9秒前
柳贯一完成签到,获得积分10
9秒前
思源应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Tayzon完成签到,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助BANG采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
11秒前
mmmio应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950964
求助须知:如何正确求助?哪些是违规求助? 4213785
关于积分的说明 13105631
捐赠科研通 3995556
什么是DOI,文献DOI怎么找? 2186991
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115436