Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier

随机森林 特征选择 分类器(UML) 计算机科学 人工智能 机器学习 模式识别(心理学) 伪氨基酸组成 交叉验证 编码 马修斯相关系数 支持向量机 氨基酸 基因 生物化学 化学 二肽
作者
Cheng Chen,Qingmei Zhang,Bin Yu,Zhaomin Yu,Patrick J. Lawrence,Qin Ma,Yan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:123: 103899-103899 被引量:201
标识
DOI:10.1016/j.compbiomed.2020.103899
摘要

Protein-protein interactions (PPIs) are involved with most cellular activities at the proteomic level, making the study of PPIs necessary to comprehending any biological process. Machine learning approaches have been explored, leading to more accurate and generalized PPIs predictions. In this paper, we propose a predictive framework called StackPPI. First, we use pseudo amino acid composition, Moreau-Broto, Moran and Geary autocorrelation descriptor, amino acid composition position-specific scoring matrix, Bi-gram position-specific scoring matrix and composition, transition and distribution to encode biologically relevant features. Secondly, we employ XGBoost to reduce feature noise and perform dimensionality reduction through gradient boosting and average gain. Finally, the optimized features that result are analyzed by StackPPI, a PPIs predictor we have developed from a stacked ensemble classifier consisting of random forest, extremely randomized trees and logistic regression algorithms. Five-fold cross-validation shows StackPPI can successfully predict PPIs with an ACC of 89.27%, MCC of 0.7859, AUC of 0.9561 on Helicobacter pylori, and with an ACC of 94.64%, MCC of 0.8934, AUC of 0.9810 on Saccharomyces cerevisiae. We find StackPPI improves protein interaction prediction accuracy on independent test sets compared to the state-of-the-art models. Finally, we highlight StackPPI's ability to infer biologically significant PPI networks. StackPPI's accurate prediction of functional pathways make it the logical choice for studying the underlying mechanism of PPIs, especially as it applies to drug design. The datasets and source code used to create StackPPI are available here: https://github.com/QUST-AIBBDRC/StackPPI/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LLLLLLLL发布了新的文献求助10
1秒前
2秒前
明昼完成签到,获得积分10
2秒前
萧水白发布了新的文献求助100
2秒前
mouxq发布了新的文献求助10
3秒前
4秒前
4秒前
大个应助科研通管家采纳,获得10
5秒前
核桃应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
震甫应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
曲奇不甜发布了新的文献求助10
6秒前
JamesPei应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
核桃应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
jiw发布了新的文献求助10
8秒前
8秒前
llll完成签到,获得积分10
8秒前
8秒前
豆豆发布了新的文献求助10
9秒前
烟花应助mouxq采纳,获得10
9秒前
JamesPei应助阿科采纳,获得10
10秒前
GRJ完成签到,获得积分10
10秒前
百年孤独完成签到,获得积分10
11秒前
12秒前
lxy发布了新的文献求助50
12秒前
1101592875应助Luo采纳,获得10
13秒前
满意的皮带完成签到,获得积分10
14秒前
sunyu完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942359
求助须知:如何正确求助?哪些是违规求助? 3487615
关于积分的说明 11044390
捐赠科研通 3218054
什么是DOI,文献DOI怎么找? 1778687
邀请新用户注册赠送积分活动 864370
科研通“疑难数据库(出版商)”最低求助积分说明 799438