LR-cGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis

计算机科学 模态(人机交互) 人工智能 模式识别(心理学) 残余物 锐化 算法
作者
Bo Zhan,Di Li,Yan Wang,Zongqing Ma,Xi Wu,Jiliu Zhou,Luping Zhou
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:66: 102457-102457 被引量:22
标识
DOI:10.1016/j.bspc.2021.102457
摘要

This work aims to synthesize a real-like missing MRI modality using multiple modalities those already obtained, thus providing more abundant diagnostic information, and promoting the improvement of some downstream tasks, such as segmentation and diagnosis. With an adversarial network modelling the nonlinear mapping between the inputs and the output, our proposed LR-cGAN extracts the inherent latent representations from different MRI modalities with N collaboratively trained encoders, and fuses them by a latent space processing network (LSPN) composed of several residual blocks. Apart from L1 loss, the image gradient difference loss (GDL) is considered additionally as the objective function to alleviate the problem of insufficient image sharpening. To validate the effectiveness of LR-cGAN, corresponding experiments were evaluated by peak SNR (PSNR), structural similarity index (SSIM) and normalized root-mean-square error (NRMSE) on BRATS 2015 dataset. Compared to single-modality input, two-modality input improves the synthesis results by 1.196 dB PSNR, 0.019 SSIM and 0.04 NRMSE. With more inputs added, the synthesis performance exhibits an increasing trend. Once any key component, that is, LSPN, GDL loss or adversarial loss, is removed, the quality of the results will reduce to a lower level, proving their contributions to our model. Meanwhile, the final performance of our LR-cGAN network outperforms REPLICA, M-GAN, MILR and sGAN in all metrics on different synthesis tasks, demonstrating its superiority. Our proposed LR-cGAN has the flexible ability of receiving multiple modalities and generating realistic images compared to real modality images, having the potential to supplement diagnostic information in clinical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萨赫蛋糕发布了新的文献求助20
刚刚
刚刚
笛九发布了新的文献求助10
1秒前
Thomaswong完成签到,获得积分10
1秒前
热心的绿柳完成签到,获得积分20
2秒前
2秒前
2秒前
海上生明月完成签到 ,获得积分10
3秒前
邱医生发布了新的文献求助30
5秒前
5秒前
7秒前
13秒前
hehuo完成签到,获得积分20
15秒前
负责的太兰完成签到,获得积分10
17秒前
ouwen发布了新的文献求助10
17秒前
闪闪芯完成签到 ,获得积分10
17秒前
18秒前
WEN完成签到,获得积分10
18秒前
完美世界应助萨赫蛋糕采纳,获得10
19秒前
哈哈哈哈哈应助Thomaswong采纳,获得10
19秒前
19秒前
20秒前
温水云完成签到,获得积分20
21秒前
西门老黑完成签到,获得积分10
21秒前
Owen应助hehuo采纳,获得10
21秒前
Criminology34应助执着的忆雪采纳,获得10
22秒前
领导范儿应助LiYubin采纳,获得10
22秒前
23秒前
传奇3应助ouwen采纳,获得10
24秒前
wweiyyulling发布了新的文献求助10
24秒前
科研小菜完成签到 ,获得积分10
24秒前
xixi完成签到 ,获得积分10
25秒前
25秒前
26秒前
瑞_完成签到,获得积分10
26秒前
沈樾完成签到 ,获得积分10
26秒前
27秒前
YuZhang完成签到 ,获得积分10
27秒前
DONGLIANG发布了新的文献求助10
27秒前
唐很甜完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073345
求助须知:如何正确求助?哪些是违规求助? 4293480
关于积分的说明 13378526
捐赠科研通 4114894
什么是DOI,文献DOI怎么找? 2253241
邀请新用户注册赠送积分活动 1258048
关于科研通互助平台的介绍 1190881