已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study

医学 一致性 前列腺癌 前列腺 接收机工作特性 分级(工程) 人口 放射科 活检 内科学 癌症 病理 环境卫生 工程类 土木工程
作者
Peter Ström,Kimmo Kartasalo,Henrik Olsson,Leslie Solorzano,Brett Delahunt,Daniel M. Berney,David G. Bostwick,Andrew Evans,David J. Grignon,Peter A. Humphrey,Kenneth A. Iczkowski,James G. Kench,Glen Kristiansen,Theodorus H. van der Kwast,Kátia Ramos Moreira Leite,Jesse K. McKenney,Jon Oxley,Chin-Chen Pan,Hemamali Samaratunga,John R. Srigley
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:21 (2): 222-232 被引量:483
标识
DOI:10.1016/s1470-2045(19)30738-7
摘要

Background An increasing volume of prostate biopsies and a worldwide shortage of urological pathologists puts a strain on pathology departments. Additionally, the high intra-observer and inter-observer variability in grading can result in overtreatment and undertreatment of prostate cancer. To alleviate these problems, we aimed to develop an artificial intelligence (AI) system with clinically acceptable accuracy for prostate cancer detection, localisation, and Gleason grading. Methods We digitised 6682 slides from needle core biopsies from 976 randomly selected participants aged 50–69 in the Swedish prospective and population-based STHLM3 diagnostic study done between May 28, 2012, and Dec 30, 2014 (ISRCTN84445406), and another 271 from 93 men from outside the study. The resulting images were used to train deep neural networks for assessment of prostate biopsies. The networks were evaluated by predicting the presence, extent, and Gleason grade of malignant tissue for an independent test dataset comprising 1631 biopsies from 246 men from STHLM3 and an external validation dataset of 330 biopsies from 73 men. We also evaluated grading performance on 87 biopsies individually graded by 23 experienced urological pathologists from the International Society of Urological Pathology. We assessed discriminatory performance by receiver operating characteristics and tumour extent predictions by correlating predicted cancer length against measurements by the reporting pathologist. We quantified the concordance between grades assigned by the AI system and the expert urological pathologists using Cohen's kappa. Findings The AI achieved an area under the receiver operating characteristics curve of 0·997 (95% CI 0·994–0·999) for distinguishing between benign (n=910) and malignant (n=721) biopsy cores on the independent test dataset and 0·986 (0·972–0·996) on the external validation dataset (benign n=108, malignant n=222). The correlation between cancer length predicted by the AI and assigned by the reporting pathologist was 0·96 (95% CI 0·95–0·97) for the independent test dataset and 0·87 (0·84–0·90) for the external validation dataset. For assigning Gleason grades, the AI achieved a mean pairwise kappa of 0·62, which was within the range of the corresponding values for the expert pathologists (0·60–0·73). Interpretation An AI system can be trained to detect and grade cancer in prostate needle biopsy samples at a ranking comparable to that of international experts in prostate pathology. Clinical application could reduce pathology workload by reducing the assessment of benign biopsies and by automating the task of measuring cancer length in positive biopsy cores. An AI system with expert-level grading performance might contribute a second opinion, aid in standardising grading, and provide pathology expertise in parts of the world where it does not exist. Funding Swedish Research Council, Swedish Cancer Society, Swedish eScience Research Center, EIT Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张娇发布了新的文献求助10
5秒前
Cathy发布了新的文献求助10
12秒前
12秒前
667788发布了新的文献求助10
17秒前
烂漫吐司应助卡卡咧咧采纳,获得10
19秒前
田様应助ccm采纳,获得10
23秒前
星辰大海应助大马哈鱼采纳,获得10
31秒前
33秒前
33秒前
Silence完成签到 ,获得积分10
34秒前
fengyl发布了新的文献求助10
37秒前
无奈薯片发布了新的文献求助10
39秒前
33完成签到,获得积分10
40秒前
41秒前
茫然树茫然果完成签到,获得积分10
42秒前
33发布了新的文献求助10
44秒前
44秒前
乐乐应助无奈薯片采纳,获得10
47秒前
50秒前
ghy完成签到 ,获得积分10
52秒前
科研通AI2S应助草木采纳,获得10
53秒前
独特靖巧发布了新的文献求助10
54秒前
55秒前
无奈薯片完成签到,获得积分10
56秒前
58秒前
oboy应助科研通管家采纳,获得10
58秒前
oboy应助科研通管家采纳,获得10
58秒前
情怀应助科研通管家采纳,获得10
58秒前
59秒前
哈哈完成签到 ,获得积分10
1分钟前
认真河马发布了新的文献求助10
1分钟前
查丽发布了新的文献求助10
1分钟前
痴情的明辉完成签到 ,获得积分10
1分钟前
晴空万里发布了新的文献求助10
1分钟前
1分钟前
柠木完成签到 ,获得积分10
1分钟前
科研通AI2S应助草木采纳,获得10
1分钟前
123发布了新的文献求助10
1分钟前
科目三应助zmy采纳,获得10
1分钟前
科研通AI5应助晴空万里采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343717
关于积分的说明 10317435
捐赠科研通 3060495
什么是DOI,文献DOI怎么找? 1679566
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295