Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study

医学 一致性 前列腺癌 前列腺 接收机工作特性 分级(工程) 人口 放射科 活检 内科学 癌症 病理 环境卫生 工程类 土木工程
作者
Peter Ström,Kimmo Kartasalo,Henrik Olsson,Leslie Solorzano,Brett Delahunt,Daniel M. Berney,David G. Bostwick,Andrew Evans,David J. Grignon,Peter A. Humphrey,Kenneth A. Iczkowski,James G. Kench,Glen Kristiansen,Theodorus van der Kwast,Kátia Ramos Moreira Leite,Jesse K. McKenney,Jon Oxley,Chin-Chen Pan,Hemamali Samaratunga,John R. Srigley
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:21 (2): 222-232 被引量:523
标识
DOI:10.1016/s1470-2045(19)30738-7
摘要

Background An increasing volume of prostate biopsies and a worldwide shortage of urological pathologists puts a strain on pathology departments. Additionally, the high intra-observer and inter-observer variability in grading can result in overtreatment and undertreatment of prostate cancer. To alleviate these problems, we aimed to develop an artificial intelligence (AI) system with clinically acceptable accuracy for prostate cancer detection, localisation, and Gleason grading. Methods We digitised 6682 slides from needle core biopsies from 976 randomly selected participants aged 50–69 in the Swedish prospective and population-based STHLM3 diagnostic study done between May 28, 2012, and Dec 30, 2014 (ISRCTN84445406), and another 271 from 93 men from outside the study. The resulting images were used to train deep neural networks for assessment of prostate biopsies. The networks were evaluated by predicting the presence, extent, and Gleason grade of malignant tissue for an independent test dataset comprising 1631 biopsies from 246 men from STHLM3 and an external validation dataset of 330 biopsies from 73 men. We also evaluated grading performance on 87 biopsies individually graded by 23 experienced urological pathologists from the International Society of Urological Pathology. We assessed discriminatory performance by receiver operating characteristics and tumour extent predictions by correlating predicted cancer length against measurements by the reporting pathologist. We quantified the concordance between grades assigned by the AI system and the expert urological pathologists using Cohen's kappa. Findings The AI achieved an area under the receiver operating characteristics curve of 0·997 (95% CI 0·994–0·999) for distinguishing between benign (n=910) and malignant (n=721) biopsy cores on the independent test dataset and 0·986 (0·972–0·996) on the external validation dataset (benign n=108, malignant n=222). The correlation between cancer length predicted by the AI and assigned by the reporting pathologist was 0·96 (95% CI 0·95–0·97) for the independent test dataset and 0·87 (0·84–0·90) for the external validation dataset. For assigning Gleason grades, the AI achieved a mean pairwise kappa of 0·62, which was within the range of the corresponding values for the expert pathologists (0·60–0·73). Interpretation An AI system can be trained to detect and grade cancer in prostate needle biopsy samples at a ranking comparable to that of international experts in prostate pathology. Clinical application could reduce pathology workload by reducing the assessment of benign biopsies and by automating the task of measuring cancer length in positive biopsy cores. An AI system with expert-level grading performance might contribute a second opinion, aid in standardising grading, and provide pathology expertise in parts of the world where it does not exist. Funding Swedish Research Council, Swedish Cancer Society, Swedish eScience Research Center, EIT Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿人完成签到,获得积分10
刚刚
jenlaka完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助10
2秒前
熠旅完成签到,获得积分10
2秒前
寒酥完成签到,获得积分10
2秒前
hjin发布了新的文献求助10
2秒前
2秒前
SUN完成签到 ,获得积分10
2秒前
雷德露丝完成签到,获得积分10
2秒前
冷静青文发布了新的文献求助10
2秒前
周周完成签到,获得积分10
3秒前
3秒前
冷傲的电源完成签到,获得积分10
3秒前
在水一方应助纳纳椰采纳,获得10
3秒前
Edison发布了新的文献求助10
3秒前
3秒前
王一g完成签到,获得积分10
4秒前
哈哈发布了新的文献求助10
4秒前
小马甲应助luhui采纳,获得10
4秒前
小古完成签到,获得积分10
4秒前
4秒前
完美冷安完成签到,获得积分10
5秒前
江屿完成签到,获得积分10
5秒前
赤练仙子完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
shuo0976完成签到,获得积分10
7秒前
7秒前
7秒前
xhan完成签到,获得积分10
7秒前
8秒前
18岁的momo完成签到,获得积分20
8秒前
此身越重洋完成签到,获得积分10
8秒前
后夜发布了新的文献求助10
8秒前
Zblue发布了新的文献求助10
8秒前
8秒前
努力的科研小白完成签到 ,获得积分10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269988
求助须知:如何正确求助?哪些是违规求助? 4428291
关于积分的说明 13783740
捐赠科研通 4305995
什么是DOI,文献DOI怎么找? 2362950
邀请新用户注册赠送积分活动 1358614
关于科研通互助平台的介绍 1321434