已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios

强化学习 机器人 避碰 稳健性(进化) 计算机科学 人工智能 一般化 分布式计算 碰撞 计算机安全 数学 生物化学 基因 数学分析 化学
作者
Tingxiang Fan,Pinxin Long,Wenxi Liu,Jia Pan
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:39 (7): 856-892 被引量:244
标识
DOI:10.1177/0278364920916531
摘要

Developing a safe and efficient collision-avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generates its paths with limited observation of other robots’ states and intentions. Prior distributed multi-robot collision-avoidance systems often require frequent inter-robot communication or agent-level features to plan a local collision-free action, which is not robust and computationally prohibitive. In addition, the performance of these methods is not comparable with their centralized counterparts in practice. In this article, we present a decentralized sensor-level collision-avoidance policy for multi-robot systems, which shows promising results in practical applications. In particular, our policy directly maps raw sensor measurements to an agent’s steering commands in terms of the movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to learn an optimal policy. The policy is trained over a large number of robots in rich, complex environments simultaneously using a policy-gradient-based reinforcement-learning algorithm. The learning algorithm is also integrated into a hybrid control framework to further improve the policy’s robustness and effectiveness. We validate the learned sensor-level collision-3avoidance policy in a variety of simulated and real-world scenarios with thorough performance evaluations for large-scale multi-robot systems. The generalization of the learned policy is verified in a set of unseen scenarios including the navigation of a group of heterogeneous robots and a large-scale scenario with 100 robots. Although the policy is trained using simulation data only, we have successfully deployed it on physical robots with shapes and dynamics characteristics that are different from the simulated agents, in order to demonstrate the controller’s robustness against the simulation-to-real modeling error. Finally, we show that the collision-avoidance policy learned from multi-robot navigation tasks provides an excellent solution for safe and effective autonomous navigation for a single robot working in a dense real human crowd. Our learned policy enables a robot to make effective progress in a crowd without getting stuck. More importantly, the policy has been successfully deployed on different types of physical robot platforms without tedious parameter tuning. Videos are available at https://sites.google.com/view/hybridmrca .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34给xiexie的求助进行了留言
1秒前
2秒前
我是老大应助lilliu采纳,获得10
2秒前
FashionBoy应助Trey采纳,获得10
3秒前
科研通AI6应助缓慢弼采纳,获得10
3秒前
诱导效应发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
7秒前
斧王应助666采纳,获得10
7秒前
朴实子骞完成签到 ,获得积分10
9秒前
9秒前
诱导效应完成签到,获得积分10
11秒前
孟冬完成签到 ,获得积分10
11秒前
彭于晏应助斯文的面包采纳,获得10
11秒前
今天完成签到,获得积分10
13秒前
15秒前
小鱼马完成签到,获得积分10
17秒前
haohaohao发布了新的文献求助10
18秒前
藤井树发布了新的文献求助10
18秒前
生动路人发布了新的文献求助20
19秒前
Darcy发布了新的文献求助100
20秒前
23秒前
小透明发布了新的文献求助10
24秒前
黑煤球发布了新的文献求助20
25秒前
26秒前
26秒前
27秒前
CiCi发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401052
求助须知:如何正确求助?哪些是违规求助? 4520107
关于积分的说明 14078072
捐赠科研通 4432959
什么是DOI,文献DOI怎么找? 2433946
邀请新用户注册赠送积分活动 1426122
关于科研通互助平台的介绍 1404738