计算机科学
联营
人工智能
跨步
分割
交叉口(航空)
解析
平面图(考古学)
计算机视觉
目标检测
像素
对象(语法)
平面布置图
图像分割
模式识别(心理学)
图层(电子)
集合(抽象数据类型)
工程制图
工程类
历史
计算机安全
程序设计语言
考古
航空航天工程
化学
有机化学
作者
Samuel Dodge,Jiu Xu,Björn Stenger
标识
DOI:10.23919/mva.2017.7986875
摘要
This paper introduces a method for analyzing floor plan images using wall segmentation, object detection, and optical character recognition. We introduce a challenging new real-estate floor plan dataset, R-FP, evaluate different wall segmentation methods, and propose fully convolutional networks (FCN) for this task. We explore architectures with different pixel-stride values and more compact ones with skipped pooling layers. An FCN-2s with a 2-pixel stride layer achieves state-of-the-art performance, obtaining a mean Intersection-over-Union score of 89.9% on R-FP, and 94.4% on the public CVC-FP data set. Using OCR and object detection, we estimate room sizes. Finally, we show applications in automatic 3D model building and interactive furniture fitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI