WDCCNet: Weighted Double-Classifier Constraint Neural Network for Mammographic Image Classification

Softmax函数 判别式 计算机科学 人工智能 特征提取 模式识别(心理学) 人工神经网络 卷积神经网络 分类器(UML) 上下文图像分类 深度学习 图像(数学) 机器学习 乳腺摄影术 乳腺癌 癌症 医学 内科学
作者
Yan Wang,Zizhou Wang,Yangqin Feng,Lei Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (3): 559-570 被引量:22
标识
DOI:10.1109/tmi.2021.3117272
摘要

The early detection and timely treatment of breast cancer can save lives. Mammography is one of the most efficient approaches to screening early breast cancer. An automatic mammographic image classification method could improve the work efficiency of radiologists. Current deep learning-based methods typically use the traditional softmax loss to optimize the feature extraction part, which aims to learn the features of mammographic images. However, previous studies have shown that the feature extraction part cannot learn discriminative features from complex data using the standard softmax loss. In this paper, we design a new architecture and propose respective loss functions. Specifically, we develop a double-classifier network architecture that constrains the extracted features' distribution by changing the classifiers' decision boundaries. Then, we propose the double-classifier constraint loss function to constrain the decision boundaries so that the feature extraction part can learn discriminative features. Furthermore, by taking advantage of the architecture of two classifiers, the neural network can detect the difficult-to-classify samples. We propose a weighted double-classifier constraint method to make the feature extract part pay more attention to learning difficult-to-classify samples' features. Our proposed method can be easily applied to an existing convolutional neural network to improve mammographic image classification performance. We conducted extensive experiments to evaluate our methods on three public benchmark mammographic image datasets. The results showed that our methods outperformed many other similar methods and state-of-the-art methods on the three public medical benchmarks. Our code and weights can be found on GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
领导范儿应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
啦啦啦完成签到,获得积分10
6秒前
shanmen完成签到,获得积分10
8秒前
Akim应助潇洒蛋挞采纳,获得10
9秒前
Hello应助小白采纳,获得10
9秒前
汉堡包应助xiaoqi666采纳,获得10
11秒前
lonelycube应助SEM小菜鸡采纳,获得10
12秒前
12秒前
12秒前
深情安青应助May采纳,获得10
15秒前
行于繁华发布了新的文献求助10
17秒前
852应助Developing_human采纳,获得10
18秒前
grewj6完成签到,获得积分10
18秒前
粗心的chen完成签到,获得积分10
21秒前
22秒前
GQ发布了新的文献求助10
22秒前
大眼的平松完成签到,获得积分10
26秒前
YHX9910完成签到,获得积分10
27秒前
小马甲应助粗心的chen采纳,获得10
27秒前
27秒前
XX完成签到,获得积分10
28秒前
SciGPT应助大胆的平蓝采纳,获得10
28秒前
温水完成签到 ,获得积分10
29秒前
29秒前
彤航发布了新的文献求助100
30秒前
lwm不想看文献完成签到 ,获得积分10
32秒前
喝茶不饮酒完成签到,获得积分10
34秒前
qq发布了新的文献求助10
34秒前
35秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4448913
求助须知:如何正确求助?哪些是违规求助? 3917453
关于积分的说明 12160121
捐赠科研通 3566973
什么是DOI,文献DOI怎么找? 1958768
邀请新用户注册赠送积分活动 998112
科研通“疑难数据库(出版商)”最低求助积分说明 893266