Large-Scale Evaluation of Topic Models and Dimensionality Reduction Methods for 2D Text Spatialization

计算机科学 降维 空间化 维数之咒 水准点(测量) 人工智能 主题模型 集合(抽象数据类型) 语料库 机器学习 数据挖掘 自然语言处理 模式识别(心理学) 大地测量学 社会学 人类学 程序设计语言 地理
作者
Daniel Atzberger,Tim Cech,Matthias Trapp,Rico Richter,Willy Scheibel,Jürgen Döllner,Tobias Schreck
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:4
标识
DOI:10.1109/tvcg.2023.3326569
摘要

Topic models are a class of unsupervised learning algorithms for detecting the semantic structure within a text corpus. Together with a subsequent dimensionality reduction algorithm, topic models can be used for deriving spatializations for text corpora as two-dimensional scatter plots, reflecting semantic similarity between the documents and supporting corpus analysis. Although the choice of the topic model, the dimensionality reduction, and their underlying hyperparameters significantly impact the resulting layout, it is unknown which particular combinations result in high-quality layouts with respect to accuracy and perception metrics. To investigate the effectiveness of topic models and dimensionality reduction methods for the spatialization of corpora as two-dimensional scatter plots (or basis for landscape-type visualizations), we present a large-scale, benchmark-based computational evaluation. Our evaluation consists of (1) a set of corpora, (2) a set of layout algorithms that are combinations of topic models and dimensionality reductions, and (3) quality metrics for quantifying the resulting layout. The corpora are given as document-term matrices, and each document is assigned to a thematic class. The chosen metrics quantify the preservation of local and global properties and the perceptual effectiveness of the two-dimensional scatter plots. By evaluating the benchmark on a computing cluster, we derived a multivariate dataset with over 45 000 individual layouts and corresponding quality metrics. Based on the results, we propose guidelines for the effective design of text spatializations that are based on topic models and dimensionality reductions. As a main result, we show that interpretable topic models are beneficial for capturing the structure of text corpora. We furthermore recommend the use of t-SNE as a subsequent dimensionality reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jun2025完成签到,获得积分10
3秒前
LiCQ完成签到,获得积分10
3秒前
nenoaowu发布了新的文献求助10
4秒前
文静勒应助HXY采纳,获得20
4秒前
5秒前
知了完成签到,获得积分10
6秒前
6秒前
爱吃地锅鱼应助HANJIE666采纳,获得10
6秒前
任白993发布了新的文献求助10
7秒前
Ava应助冷傲如风采纳,获得10
7秒前
8秒前
8秒前
8秒前
Ava应助jim_hacker采纳,获得10
8秒前
8秒前
顾矜应助牟英杰采纳,获得30
10秒前
10秒前
nah完成签到 ,获得积分10
10秒前
汉堡包应助zhd采纳,获得10
10秒前
11秒前
11秒前
11秒前
Hilda007应助墨染书香采纳,获得10
11秒前
经小夏发布了新的文献求助10
12秒前
赘婿应助斯人采纳,获得10
12秒前
852应助nenoaowu采纳,获得10
12秒前
xiaohuang发布了新的文献求助10
13秒前
Aikesi完成签到,获得积分10
13秒前
14秒前
14秒前
FLOR发布了新的文献求助10
15秒前
15秒前
天天发布了新的文献求助10
15秒前
16秒前
17秒前
Susie发布了新的文献求助10
17秒前
531完成签到,获得积分10
17秒前
华仔应助练得身形似鹤形采纳,获得10
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342994
求助须知:如何正确求助?哪些是违规求助? 4478635
关于积分的说明 13940380
捐赠科研通 4375604
什么是DOI,文献DOI怎么找? 2404155
邀请新用户注册赠送积分活动 1396661
关于科研通互助平台的介绍 1369026