Context Adaptive Network for Image Inpainting

修补 计算机科学 人工智能 背景(考古学) 核(代数) 卷积(计算机科学) 模式识别(心理学) 块(置换群论) 特征(语言学) 卷积神经网络 机器学习 图像(数学) 人工神经网络 计算机视觉 数学 古生物学 语言学 哲学 几何学 组合数学 生物
作者
Ye Deng,S. Hui,Sanping Zhou,Wenli Huang,Jinjun Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6332-6345 被引量:14
标识
DOI:10.1109/tip.2023.3298560
摘要

In a typical image inpainting task, the location and shape of the damaged or masked area is often random and irregular. The vanilla convolutions widely used in learning-based inpainting models treat all spatial features as valid and share parameters across regions, making it difficult for them to cope with those irregular damages, and models tend to produce inpainting results with color discrepancy and blurriness. In this paper, we propose a novel Context Adaptive Network (CANet) to address this issue. The main idea of the proposed CANet is able to generate different weights depending on the miscellaneous input, which may help to complement images with multiple broken forms in a flexible way. Specifically, the proposed CANet has two novel context adaptive modules, namely, the context adaptive block (CAB) and the cross-scale contextual attention (CSCA), which utilize attention mechanisms to cope with diverse content breakdowns. The proposed CAB, during the forward propagation, uses an adaptive term to determine the importance between adaptive term and convolution kernel, so as to dynamically balance features based on the degree of breakage (confidence level or soft mask), and the overall calculation is formulated as a classic convolution implementation with an additional attention term to describe local structure. Besides, the proposed CSCA, not only takes advantage of the contextual attention module, but also considers cross-scale information transfer to generate reasonable features for damaged areas, thus alleviating the inefficiency of the long-range modeling capability of convolutional neural networks. Qualitative and quantitative experiments show that our method performs better than state-of-the-arts, producing clearer, more coherent and visually plausible inpainting results. The code can be found at github.com/dengyecode/CANet_image_inpainting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
carrier_hc发布了新的文献求助10
刚刚
1秒前
Walden发布了新的文献求助10
1秒前
Hello应助公西天抒采纳,获得10
2秒前
2秒前
香蕉梨愁发布了新的文献求助10
2秒前
上官若男应助JJJXG采纳,获得10
4秒前
5秒前
雪白皮卡丘完成签到,获得积分10
6秒前
隐形千愁完成签到,获得积分10
6秒前
6秒前
晓彤发布了新的文献求助10
7秒前
ws发布了新的文献求助10
7秒前
jurangaoxueshu完成签到,获得积分10
10秒前
11秒前
英俊凡波完成签到,获得积分10
11秒前
Aaaapear完成签到,获得积分10
12秒前
陈志宏完成签到,获得积分10
12秒前
Y.J发布了新的文献求助10
13秒前
认真学习的橘子完成签到,获得积分10
13秒前
WXY完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
研友_VZG7GZ应助stretchability采纳,获得10
15秒前
Lucas应助TTT采纳,获得10
15秒前
lzx发布了新的文献求助10
16秒前
bym发布了新的文献求助10
17秒前
ws完成签到,获得积分20
18秒前
18秒前
18秒前
18秒前
19秒前
lsclsclsc发布了新的文献求助10
19秒前
Walden完成签到,获得积分10
20秒前
桓某人发布了新的文献求助10
20秒前
21秒前
彭于晏应助shshjzh采纳,获得10
22秒前
adeline925发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450971
求助须知:如何正确求助?哪些是违规求助? 3918633
关于积分的说明 12163065
捐赠科研通 3568612
什么是DOI,文献DOI怎么找? 1959680
邀请新用户注册赠送积分活动 999077
科研通“疑难数据库(出版商)”最低求助积分说明 894080