NHSMM-MAR-sdNC: A novel data-driven computational framework for state-dependent effective connectivity analysis

计算机科学 因果关系(物理学) 马尔可夫链 隐马尔可夫模型 自回归模型 国家(计算机科学) 动态功能连接 静息状态功能磁共振成像 人工智能 机器学习 算法 数学 计量经济学 神经科学 物理 量子力学 生物
作者
H. Wang,Jiaqing Chen,Zihao Yuan,Yangxin Huang,Fuchun Lin
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103290-103290
标识
DOI:10.1016/j.media.2024.103290
摘要

The brain exhibits intrinsic dynamics characterized by spontaneous spatiotemporal reorganization of neural activity or metastability, which is associated closely with functional integration and segregation. Compared to dynamic functional connectivity, state-dependent effective connectivity (i.e., dynamic effective connectivity) is more suitable for exploring the metastability as its ability to infer causalities between brain regions. However, methods for state-dependent effective connectivity are scarce and urgently needed. In this study, a novel data-driven computational framework, named NHSMM-MAR-sdNC integrating nonparametric hidden semi-Markov model combined with multivariate autoregressive model and state-dependent new causality, is proposed to investigate the state-dependent effective connectivity. The framework is not constrained by any biological assumptions. Furthermore, state number can be inferred from the observed data directly and the state duration distributions will be estimated explicitly rather than restricted by geometric form, which overcomes limitations of hidden Markov model. Experimental results of synthetic data show that the framework can identify the state number adaptively and the state-dependent causality networks accurately. The dynamics of state-related causality networks are also revealed by the new method on real-world resting-state fMRI data. Our method provides a new data-driven computational framework for identifying state-dependent effective connectivity, which will facilitate the identification and assessment of metastability and itinerant dynamics of the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花生完成签到,获得积分10
1秒前
爆米花应助wswddtd采纳,获得10
1秒前
负责的小蜜蜂完成签到,获得积分10
2秒前
若兰完成签到,获得积分10
2秒前
xxx完成签到,获得积分10
2秒前
3秒前
KING完成签到,获得积分10
4秒前
李贝宁完成签到,获得积分10
4秒前
852应助Lin采纳,获得10
4秒前
4秒前
姜君完成签到,获得积分20
5秒前
叶洛洛完成签到 ,获得积分10
5秒前
斯文刺猬应助皮卡丘采纳,获得10
5秒前
6秒前
丘比特应助BakedMax采纳,获得10
6秒前
6秒前
9秒前
阿迪发布了新的文献求助10
9秒前
花蕊发布了新的文献求助10
10秒前
11秒前
12秒前
狗咚嘻完成签到,获得积分10
12秒前
又又岩发布了新的文献求助10
13秒前
HMR完成签到 ,获得积分10
13秒前
ChatGDP_deepsuck完成签到,获得积分10
14秒前
14秒前
Neon完成签到,获得积分10
14秒前
14秒前
ttt完成签到,获得积分10
15秒前
GOW发布了新的文献求助10
16秒前
11发布了新的文献求助10
17秒前
CodeCraft应助完美的映秋采纳,获得10
18秒前
20秒前
20秒前
大个应助涛1采纳,获得10
20秒前
元友容完成签到 ,获得积分10
20秒前
Persevere完成签到,获得积分10
21秒前
顺其自然完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828264
求助须知:如何正确求助?哪些是违规求助? 3370626
关于积分的说明 10464223
捐赠科研通 3090515
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770506