Large Language Model–Driven Knowledge Graph Construction in Sepsis Care Using Multicenter Clinical Databases: Development and Usability Study

预印本 计算机科学 梅德林 医学 数据库 万维网 数据科学 政治学 法学
作者
Hao Yang,Jiaxi Li,Chi Zhang,Alejandro Pazos,Bairong Shen
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e65537-e65537 被引量:6
标识
DOI:10.2196/65537
摘要

Background Sepsis is a complex, life-threatening condition characterized by significant heterogeneity and vast amounts of unstructured data, posing substantial challenges for traditional knowledge graph construction methods. The integration of large language models (LLMs) with real-world data offers a promising avenue to address these challenges and enhance the understanding and management of sepsis. Objective This study aims to develop a comprehensive sepsis knowledge graph by leveraging the capabilities of LLMs, specifically GPT-4.0, in conjunction with multicenter clinical databases. The goal is to improve the understanding of sepsis and provide actionable insights for clinical decision-making. We also established a multicenter sepsis database (MSD) to support this effort. Methods We collected clinical guidelines, public databases, and real-world data from 3 major hospitals in Western China, encompassing 10,544 patients diagnosed with sepsis. Using GPT-4.0, we used advanced prompt engineering techniques for entity recognition and relationship extraction, which facilitated the construction of a nuanced sepsis knowledge graph. Results We established a sepsis database with 10,544 patient records, including 8497 from West China Hospital, 690 from Shangjin Hospital, and 357 from Tianfu Hospital. The sepsis knowledge graph comprises of 1894 nodes and 2021 distinct relationships, encompassing nine entity concepts (diseases, symptoms, biomarkers, imaging examinations, etc) and 8 semantic relationships (complications, recommended medications, laboratory tests, etc). GPT-4.0 demonstrated superior performance in entity recognition and relationship extraction, achieving an F1-score of 76.76 on a sepsis-specific dataset, outperforming other models such as Qwen2 (43.77) and Llama3 (48.39). On the CMeEE dataset, GPT-4.0 achieved an F1-score of 65.42 using few-shot learning, surpassing traditional models such as BERT-CRF (62.11) and Med-BERT (60.66). Building upon this, we compiled a comprehensive sepsis knowledge graph, comprising of 1894 nodes and 2021 distinct relationships. Conclusions This study represents a pioneering effort in using LLMs, particularly GPT-4.0, to construct a comprehensive sepsis knowledge graph. The innovative application of prompt engineering, combined with the integration of multicenter real-world data, has significantly enhanced the efficiency and accuracy of knowledge graph construction. The resulting knowledge graph provides a robust framework for understanding sepsis, supporting clinical decision-making, and facilitating further research. The success of this approach underscores the potential of LLMs in medical research and sets a new benchmark for future studies in sepsis and other complex medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
寻道图强应助科研通管家采纳,获得30
刚刚
xxfsx应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
4秒前
4秒前
哎哎发布了新的文献求助10
5秒前
小马甲应助Gaojin锦采纳,获得10
6秒前
辛夏子完成签到,获得积分10
6秒前
繁荣的天玉完成签到,获得积分10
7秒前
21完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
BeSideWorld发布了新的文献求助10
9秒前
爱吃土豆的小狸猫完成签到,获得积分10
9秒前
001完成签到,获得积分10
10秒前
谷雨秋发布了新的文献求助10
11秒前
cambridge完成签到,获得积分10
11秒前
11秒前
哈no发布了新的文献求助10
12秒前
叫什么都行完成签到 ,获得积分10
12秒前
pupucici发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
木火灰完成签到,获得积分10
16秒前
千陽发布了新的文献求助10
16秒前
Agoni完成签到,获得积分10
17秒前
傲娇人达发布了新的文献求助10
20秒前
21秒前
风凌完成签到 ,获得积分10
22秒前
23秒前
Cassie完成签到,获得积分10
23秒前
25秒前
千陽完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434578
求助须知:如何正确求助?哪些是违规求助? 4546861
关于积分的说明 14204710
捐赠科研通 4466829
什么是DOI,文献DOI怎么找? 2448328
邀请新用户注册赠送积分活动 1439160
关于科研通互助平台的介绍 1415998