3D CT Radiomic Analysis Improves Detection of Axillary Lymph Node Metastases Compared to Conventional Features in Patients With Locally Advanced Breast Cancer

医学 乳腺癌 放射科 淋巴结 回顾性队列研究 活检 列线图 腋窝淋巴结 癌症 核医学 肿瘤科 内科学
作者
Mark Barszczyk,Navneet Singh,Afsaneh Alikhassi,Matthew Van Oirschot,Grey Kuling,Alex Kiss,Sonal Gandhi,Sharon Nofech‐Mozes,Nicole Look Hong,Alexander Bilbily,Anne L. Martel,Naomi Matsuura,Belinda Curpen
出处
期刊:Journal of breast imaging [Oxford University Press]
卷期号:6 (4): 397-406 被引量:2
标识
DOI:10.1093/jbi/wbae022
摘要

Abstract Objective Preoperative detection of axillary lymph node metastases (ALNMs) from breast cancer is suboptimal; however, recent work suggests radiomics may improve detection of ALNMs. This study aims to develop a 3D CT radiomics model to improve detection of ALNMs compared to conventional imaging features in patients with locally advanced breast cancer. Methods Retrospective chart review was performed on patients referred to a specialty breast cancer center between 2015 and 2020 with US-guided biopsy-proven ALNMs and pretreatment chest CT. One hundred and twelve patients (224 lymph nodes) met inclusion and exclusion criteria and were assigned to discovery (n = 150 nodes) and testing (n = 74 nodes) cohorts. US-biopsy images were referenced in identifying ALNMs on CT, with contralateral nodes taken as negative controls. Positive and negative nodes were assessed for conventional features of lymphadenopathy as well as for 107 radiomic features extracted following 3D segmentation. Diagnostic performance of individual and combined radiomic features was evaluated. Results The strongest conventional imaging feature of ALNMs was short axis diameter ≥ 10 mm with a sensitivity of 64%, specificity of 95%, and area under the curve (AUC) of 0.89 (95% CI, 0.84-0.94). Several radiomic features outperformed conventional features, most notably energy, a measure of voxel density magnitude. This feature demonstrated a sensitivity, specificity, and AUC of 91%, 79%, and 0.94 (95% CI, 0.91-0.98) for the discovery cohort. On the testing cohort, energy scored 92%, 81%, and 0.94 (95% CI, 0.89-0.99) for sensitivity, specificity, and AUC, respectively. Combining radiomic features did not improve AUC compared to energy alone (P = .08). Conclusion 3D radiomic analysis represents a promising approach for noninvasive and accurate detection of ALNMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李蝶儿完成签到 ,获得积分10
2秒前
2秒前
三点半完成签到 ,获得积分10
3秒前
huohuo143完成签到,获得积分10
3秒前
冷酷的安珊完成签到,获得积分10
3秒前
Orange应助idiot采纳,获得10
7秒前
7秒前
7秒前
风清扬发布了新的文献求助30
8秒前
忧伤的慕梅完成签到 ,获得积分10
8秒前
大胆的向松完成签到 ,获得积分10
9秒前
文0987完成签到,获得积分10
9秒前
lxy完成签到,获得积分10
9秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
10秒前
淡淡阁完成签到 ,获得积分10
12秒前
chengqin完成签到 ,获得积分10
14秒前
月月完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
聪明的寄灵完成签到,获得积分10
19秒前
木樨完成签到,获得积分10
20秒前
风清扬发布了新的文献求助10
23秒前
傲娇皮皮虾完成签到 ,获得积分10
24秒前
会飞的小甘蔗完成签到 ,获得积分10
24秒前
冷酷的松思完成签到,获得积分10
25秒前
MOON完成签到,获得积分10
25秒前
青海盐湖所李阳阳完成签到 ,获得积分10
26秒前
JevonCheung完成签到 ,获得积分10
26秒前
suise完成签到,获得积分10
26秒前
认真科研完成签到,获得积分10
27秒前
酷波er应助风中冰香采纳,获得10
27秒前
28秒前
无私的朝雪完成签到 ,获得积分10
29秒前
30秒前
数乱了梨花完成签到 ,获得积分0
30秒前
璐璐完成签到,获得积分10
31秒前
香蕉白容完成签到,获得积分10
31秒前
morri完成签到 ,获得积分10
31秒前
参也完成签到 ,获得积分10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212550
求助须知:如何正确求助?哪些是违规求助? 4388677
关于积分的说明 13664311
捐赠科研通 4249234
什么是DOI,文献DOI怎么找? 2331457
邀请新用户注册赠送积分活动 1329162
关于科研通互助平台的介绍 1282582