Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study

判别式 机器学习 召回 二元分类 光学相干层析成像 深度学习 计算机科学 医学影像学 精确性和召回率 模式识别(心理学) 编码(社会科学) 人工智能 医学 心理学 支持向量机 放射科 数学 统计 认知心理学
作者
Livia Faes,Siegfried Wagner,Dun Jack Fu,Xiaoxuan Liu,Edward Korot,Joseph R. Ledsam,Trevor Back,Reena Chopra,Nikolas Pontikos,Christoph Kern,Gabriella Moraes,Martin Schmid,Dawn A. Sim,Konstantinos Balaskas,Lucas M. Bachmann,Alastair K. Denniston,Pearse A. Keane
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:1 (5): e232-e242 被引量:274
标识
DOI:10.1016/s2589-7500(19)30108-6
摘要

BackgroundDeep learning has the potential to transform health care; however, substantial expertise is required to train such models. We sought to evaluate the utility of automated deep learning software to develop medical image diagnostic classifiers by health-care professionals with no coding—and no deep learning—expertise.MethodsWe used five publicly available open-source datasets: retinal fundus images (MESSIDOR); optical coherence tomography (OCT) images (Guangzhou Medical University and Shiley Eye Institute, version 3); images of skin lesions (Human Against Machine [HAM] 10000), and both paediatric and adult chest x-ray (CXR) images (Guangzhou Medical University and Shiley Eye Institute, version 3 and the National Institute of Health [NIH] dataset, respectively) to separately feed into a neural architecture search framework, hosted through Google Cloud AutoML, that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity, and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we did external validation using the Edinburgh Dermofit Library dataset.FindingsDiagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (sensitivity 73·3–97·0%; specificity 67–100%; AUPRC 0·87–1·00). In the multiple classification tasks, the diagnostic properties ranged from 38% to 100% for sensitivity and from 67% to 100% for specificity. The discriminative performance in terms of AUPRC ranged from 0·57 to 1·00 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0·47, with a sensitivity of 49% and a positive predictive value of 52%.InterpretationAll models, except the automated deep learning model trained on the multilabel classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The quality of the open-access datasets (including insufficient information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitations of this study. The availability of automated deep learning platforms provide an opportunity for the medical community to enhance their understanding in model development and evaluation. Although the derivation of classification models without requiring a deep understanding of the mathematical, statistical, and programming principles is attractive, comparable performance to expertly designed models is limited to more elementary classification tasks. Furthermore, care should be placed in adhering to ethical principles when using these automated models to avoid discrimination and causing harm. Future studies should compare several application programming interfaces on thoroughly curated datasets.FundingNational Institute for Health Research and Moorfields Eye Charity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccccchen完成签到,获得积分10
1秒前
will214完成签到,获得积分10
2秒前
4秒前
4秒前
854fycchjh完成签到,获得积分10
5秒前
8秒前
科研通AI5应助xiaojingbao采纳,获得10
10秒前
11秒前
派大星和海绵宝宝完成签到,获得积分10
13秒前
蛋挞蛋挞发布了新的文献求助10
13秒前
闪闪雅阳发布了新的文献求助10
15秒前
christina完成签到 ,获得积分10
16秒前
酷波er应助清新的音响采纳,获得10
18秒前
芝诺的乌龟完成签到 ,获得积分0
19秒前
小二郎应助likex采纳,获得10
19秒前
研友_V8Qmr8完成签到,获得积分10
19秒前
sdfwsdfsd完成签到,获得积分10
20秒前
21秒前
sin_Lee完成签到,获得积分10
23秒前
23秒前
生椰拿铁完成签到 ,获得积分10
24秒前
传奇3应助w934420513采纳,获得30
24秒前
24秒前
兔兔酱完成签到,获得积分10
25秒前
小陆完成签到 ,获得积分10
26秒前
会飞的鱼完成签到,获得积分10
27秒前
颜陌发布了新的文献求助10
27秒前
TAKI发布了新的文献求助10
28秒前
研友_Z30GJ8发布了新的文献求助10
29秒前
ZZRR完成签到,获得积分10
30秒前
石幻枫完成签到 ,获得积分10
30秒前
31秒前
科研通AI5应助徐佳达采纳,获得10
31秒前
临诗完成签到,获得积分10
31秒前
专通下水道完成签到 ,获得积分10
32秒前
Akim应助11号迪西馅饼采纳,获得10
36秒前
兔兔酱发布了新的文献求助10
36秒前
39秒前
42秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366