State and parameter joint estimation of linear stochastic systems in presence of faults and non‐Gaussian noises

离群值 高斯分布 非线性系统 控制理论(社会学) 估计理论 卡尔曼滤波器 计算机科学 故障检测与隔离 线性模型 线性系统 算法 数学 人工智能 执行机构 控制(管理) 数学分析 物理 机器学习 量子力学
作者
Vladimir Stojanović,Shuping He,Baoyong Zhang
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:30 (16): 6683-6700 被引量:125
标识
DOI:10.1002/rnc.5131
摘要

Summary Joint estimation of states and time‐varying parameters of linear stochastic systems is of practical importance for fault diagnosis and fault tolerant control. The known fact is that measurements have outliers. They can significantly degrade the properties of linearly recursive algorithms, which are designed to work in presence of Gaussian noises. This article proposes two kinds of strategies for joint parameter‐state robust estimation of linear stochastic models in presence of all possible faults and non‐Gaussian noises. In the form of Theorem, joint robust algorithm for systems with sensor and component faults, as well as the algorithm for systems with parameter faults are proposed. Because of their good features in robust filtering, Masreliez‐Martin filter represents a cornerstone for realization of the proposed robust algorithms for joint state‐parameter estimation. The good features of proposed robust estimation algorithms, in relation to algorithms based on other widely‐used filters, are illustrated by simulation results. On the other side, intensive research in the field of mathematical modeling of pneumatic servo drives has shown that their mathematical models are nonlinear in which a lot of important details cannot be included in the model. Also, it has been well known that the nonlinear model can be approximated by a linear model with time‐varying parameters. Due to the abovementioned reasons, it can be assumed that the pneumatic cylinder model is a linear stochastic model with variable parameters. The good practical values of the proposed robust joint algorithm to identification of the pneumatic cylinder are illustrated by experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助黎羽采纳,获得10
1秒前
1秒前
Function发布了新的文献求助10
1秒前
小蘑菇应助要减肥芫采纳,获得10
1秒前
cyj发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助虚幻小凡采纳,获得10
2秒前
Vin发布了新的文献求助10
2秒前
万物春完成签到,获得积分10
3秒前
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
roro熊完成签到,获得积分10
6秒前
6秒前
7秒前
万物春发布了新的文献求助10
7秒前
7秒前
爆米花应助leolee采纳,获得10
8秒前
8秒前
8秒前
山河远完成签到,获得积分10
9秒前
CodeCraft应助孙淼采纳,获得10
9秒前
Lorenzo发布了新的文献求助10
9秒前
领导范儿应助娇气的凝芙采纳,获得10
10秒前
Aicici完成签到,获得积分10
10秒前
11秒前
名字完成签到,获得积分10
12秒前
12秒前
wenjiegao发布了新的文献求助10
12秒前
wjwless完成签到,获得积分10
13秒前
她是姑娘发布了新的文献求助10
14秒前
漂亮半兰发布了新的文献求助10
15秒前
今后应助啷个吃不饱采纳,获得10
15秒前
小蘑菇应助此生长安采纳,获得10
15秒前
Adzuki0812发布了新的文献求助10
16秒前
李健应助小西采纳,获得10
16秒前
科研通AI6应助迷路广缘采纳,获得10
17秒前
19秒前
超大一块小饼干完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411568
求助须知:如何正确求助?哪些是违规求助? 4529098
关于积分的说明 14117750
捐赠科研通 4443714
什么是DOI,文献DOI怎么找? 2438381
邀请新用户注册赠送积分活动 1430605
关于科研通互助平台的介绍 1408214