Toward a principled Bayesian workflow in cognitive science.

计算机科学 工作流程 贝叶斯概率 贝叶斯统计 人工智能 过度拟合 机器学习 概率逻辑 贝叶斯推理 自然语言处理 数据库 人工神经网络
作者
Daniel J. Schad,Michael Betancourt,Shravan Vasishth
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (1): 103-126 被引量:210
标识
DOI:10.1037/met0000275
摘要

Experiments in research on memory, language, and in other areas of cognitive science are increasingly being analyzed using Bayesian methods. This has been facilitated by the development of probabilistic programming languages such as Stan, and easily accessible front-end packages such as brms. The utility of Bayesian methods, however, ultimately depends on the relevance of the Bayesian model, in particular whether or not it accurately captures the structure of the data and the data analyst's domain expertise. Even with powerful software, the analyst is responsible for verifying the utility of their model. To demonstrate this point, we introduce a principled Bayesian workflow (Betancourt, 2018) to cognitive science. Using a concrete working example, we describe basic questions one should ask about the model: prior predictive checks, computational faithfulness, model sensitivity, and posterior predictive checks. The running example for demonstrating the workflow is data on reading times with a linguistic manipulation of object versus subject relative clause sentences. This principled Bayesian workflow also demonstrates how to use domain knowledge to inform prior distributions. It provides guidelines and checks for valid data analysis, avoiding overfitting complex models to noise, and capturing relevant data structure in a probabilistic model. Given the increasing use of Bayesian methods, we aim to discuss how these methods can be properly employed to obtain robust answers to scientific questions. All data and code accompanying this article are available from https://osf.io/b2vx9/. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
stark完成签到,获得积分10
3秒前
四体不勤发布了新的文献求助10
4秒前
14发布了新的文献求助10
5秒前
zyyin发布了新的文献求助30
6秒前
反暗发布了新的文献求助10
6秒前
cc发布了新的文献求助10
6秒前
BINGBING1230发布了新的文献求助30
6秒前
Wxxxxx完成签到 ,获得积分10
7秒前
7秒前
7秒前
jingmishensi发布了新的文献求助10
8秒前
学习中的呜哩哇啦完成签到,获得积分10
9秒前
10秒前
10秒前
邢慧兰完成签到,获得积分10
11秒前
12秒前
铃木卿完成签到,获得积分10
12秒前
14秒前
刘兆亮完成签到 ,获得积分10
16秒前
17秒前
fuchao发布了新的文献求助10
17秒前
zyyin完成签到,获得积分10
18秒前
铃木卿发布了新的文献求助10
18秒前
18秒前
abletoo发布了新的文献求助20
20秒前
健忘发布了新的文献求助10
23秒前
24秒前
慕青应助paper采纳,获得10
25秒前
26秒前
zeng5288完成签到,获得积分10
26秒前
27秒前
27秒前
科研通AI6应助香蕉曼寒采纳,获得10
27秒前
29秒前
beyonder发布了新的文献求助30
30秒前
shen发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563671
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685433
捐赠科研通 4590501
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478