期刊:Proceedings of the Royal Society of London [Royal Society] 日期:1967-08-22卷期号:300 (1460): 108-119被引量:890
标识
DOI:10.1098/rspa.1967.0160
摘要
Under repeated stressing, cracks in a specimen of vulcanized rubber may propagate and lead to failure. It has been found, however, that below a critical severity of strain no propagation occurs in the absence of chemical corrosion. This severity defines a fatigue limit for repeated stressing below which the life can be virtually indefinite. It can be expressed as the energy per unit area required to produce new surface ( T 0 ), and is about 5 x 10 4 erg/cm 2 . In contrast with gross strength properties such as tear and tensile strength, T 0 does not correlate with the viscoelastic behaviour of the material and varies only relatively slightly with chemical structure. It is shown that T 0 can be calculated approximately by considering the energy required to rupture the polymer chains lying across the path of the crack. This energy is calculated from the strengths of the chemical bonds, secondary forces being ignored. Theory and experiment agree within a factor of 2. Reasons why T 0 and the gross strength properties are influenced by different aspects of the structure of the material are discussed.