亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Technical Note: A cascade 3D U‐Net for dose prediction in radiotherapy

计算机科学 剂量学 人工智能 核医学 机器学习 预测建模 级联 体素 数据挖掘 预处理器 医学 色谱法 化学
作者
Shuolin Liu,Jingjing Zhang,Teng Li,Hui Yan,Jianfei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5574-5582 被引量:69
标识
DOI:10.1002/mp.15034
摘要

Abstract Purpose Although large datasets are available, to learn a robust dose prediction model from a limited dataset still remains challenging. This work employed cascaded deep learning models and advanced training strategies with a limited dataset to precisely predict three‐dimensional (3D) dose distribution. Methods A Cascade 3D (C3D) model is developed based on the cascade mechanism and 3D U‐Net network units. During model training, data augmentations are used to improve the generalization ability of the prediction model. A knowledge distillation technique is employed to further improve the capability of model learning. The C3D network was evaluated using the OpenKBP challenge dataset and competed with those models proposed by more than 40 teams globally. Additionally, it was compared with five existing cutting‐edge dose prediction models. The performance of these prediction models was evaluated by voxel‐based mean absolute error (MAE) and clinical‐related dosimetric metrics. The code and models are publicly available online ( https://github.com/LSL000UD/RTDosePrediction ). Results The MAE of a single C3D model without test‐time augmentation is 2.50 Gy (3.57% related to prescription dose) for nonzero dose area, which outperforms the other five dose prediction models by about 0.1 Gy–1.7 Gy. The C3D model won both dose and DVH streams of AAPM 2020 OpenKBP challenge with dose score of 2.31 and DVH score of 1.55. Conclusions The Cascading U‐Nets is an ideal solution for 3D dose prediction from a limited dataset. The proper data preprocessing, data augmentation, and optimization procedure are more important than architectural modifications of deep learning network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Apple1234发布了新的文献求助30
3秒前
李健的小迷弟应助Emma采纳,获得10
5秒前
Moo5_zzZ发布了新的文献求助30
5秒前
6秒前
7秒前
落落洛栖完成签到 ,获得积分10
7秒前
彭于晏应助豆kl采纳,获得10
8秒前
传奇3应助小白果果采纳,获得10
9秒前
10秒前
dadadsad完成签到,获得积分10
10秒前
ding应助落寞的藏今采纳,获得10
10秒前
香蕉觅云应助Apple1234采纳,获得10
13秒前
14秒前
fourcewill完成签到,获得积分20
17秒前
22秒前
超人爱吃菠菜完成签到,获得积分10
23秒前
23秒前
25秒前
天海发布了新的文献求助10
25秒前
DDMouse发布了新的文献求助10
27秒前
28秒前
28秒前
任性凤凰发布了新的文献求助10
31秒前
Lliu完成签到,获得积分10
32秒前
Moo5_zzZ发布了新的文献求助30
32秒前
tranphucthinh发布了新的文献求助30
34秒前
浮游应助yzizz采纳,获得10
34秒前
35秒前
zhou完成签到,获得积分10
38秒前
天海完成签到,获得积分10
39秒前
慕青应助酷酷的藏鸟采纳,获得10
40秒前
tranphucthinh完成签到,获得积分10
42秒前
布丁完成签到 ,获得积分10
45秒前
DDMouse完成签到,获得积分10
49秒前
丹牛完成签到,获得积分10
49秒前
50秒前
FashionBoy应助狐金华采纳,获得10
53秒前
54秒前
Emma发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364