Research on the Early-Warning Model of Network Public Opinion of Major Emergencies

舆论 计算机科学 预警系统 互联网 人工神经网络 构造(python库) 支持向量机 朴素贝叶斯分类器 情绪分析 决策树 人工智能 数据科学 数据挖掘 政治学 万维网 电信 程序设计语言 法学 政治
作者
Lijie Peng,Xi-Gao Shao,Wan-Ming Huang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 44162-44172 被引量:22
标识
DOI:10.1109/access.2021.3066242
摘要

The rapid development of Internet in recent years has led to a proliferation of social media networks as people who can gather online to share information, knowledge, and opinions. However, the network public opinion tends to generate strongly misleading and a large number of messages can cause shocks to the public once major emergencies appear. Therefore, we need to make correct prediction regarding and timely identify a potential crisis in the early warning of network public opinion. In view of this, this study fully considers the features of development and the propagation characteristics, so as to construct a network public opinion early warning index system that includes 4 first-level indicators and 13 second-level indicators. The weight of each indicator is calculated by the "CRITIC" method, so that the comprehensive evaluation value of each time point can be obtained and the early warning level of internet public opinion can be divided. Then, the Back Propagation neural network based on Genetic Algorithm (GA-BP) is used to establish a network public opinion early warning model. Finally, the major public health emergency, COVID-19 pandemic, is taken as a case for empirical analysis. The results show that by comparing with the traditional classification methods, such as BP neural network, decision tree, random forest, support vector machine and naive Bayes, GA-BP neural network has a higher accuracy rate for early warning of network public opinion. Consequently, the index system and early warning model constructed in this study have good feasibility and can provide references for related research on internet public opinion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来了咯完成签到,获得积分10
1秒前
Jj完成签到,获得积分10
1秒前
b1t完成签到,获得积分10
1秒前
田様应助AFF采纳,获得10
1秒前
zjq4302完成签到,获得积分10
2秒前
2秒前
吴钰哲完成签到,获得积分10
2秒前
4秒前
下课了吧完成签到,获得积分10
4秒前
5秒前
GaPb氘壬完成签到,获得积分10
5秒前
li完成签到,获得积分10
5秒前
6秒前
子不语完成签到,获得积分10
7秒前
北赊完成签到,获得积分10
7秒前
123完成签到,获得积分10
8秒前
slsdy完成签到,获得积分10
8秒前
心肺复苏~发布了新的文献求助10
8秒前
wanci应助xiaobai采纳,获得10
8秒前
啊鲤完成签到,获得积分10
9秒前
li发布了新的文献求助10
9秒前
我爱看文献完成签到,获得积分10
9秒前
丘比特应助激情的一斩采纳,获得10
9秒前
10秒前
10秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
10秒前
酷酷的紫南完成签到 ,获得积分10
11秒前
JJM完成签到,获得积分10
11秒前
11秒前
自由的尔蓉完成签到 ,获得积分10
11秒前
晓书斋完成签到,获得积分10
12秒前
916应助搞份炸鸡778采纳,获得20
12秒前
13秒前
茄子完成签到,获得积分10
13秒前
misalia完成签到,获得积分10
14秒前
Gigi完成签到,获得积分10
14秒前
a雪橙完成签到 ,获得积分10
14秒前
谢挽风发布了新的文献求助10
14秒前
橙橙橙完成签到,获得积分10
14秒前
3080完成签到 ,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609