Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation

冷启动(汽车) 计算机科学 推论 编码器 机器学习 任务(项目管理) 情报检索 图形 语义学(计算机科学) 人工智能 推荐系统 数据挖掘 理论计算机科学 工程类 航空航天工程 经济 管理 程序设计语言 操作系统
作者
Jiawei Zheng,Qianli Ma,Hao Gu,Zhenjing Zheng
出处
期刊:Knowledge Discovery and Data Mining 被引量:30
标识
DOI:10.1145/3447548.3467427
摘要

Cold-start recommendation is a challenging problem due to the lack of user-item interactions. Recently, heterogeneous information network~(HIN)-based recommendation methods use rich auxiliary information to enhance users and items' connections, helping alleviate the cold-start problem. Despite progress, most existing methods model HINs under traditional supervised learning settings, ignoring the gaps between training and inference procedures in cold-start scenarios. In this paper, we regard cold-start recommendation as a missing data problem where some user-item interaction data are missing. Inspired by denoising auto-encoders that train a model to reconstruct the input from its corrupted version, we propose a novel model called Multi-view Denoising Graph Auto-Encoders~(MvDGAE) on HINS. Specifically, we first extract multifaceted meaningful semantics on HINs as multi-views for both users and items, effectively enhancing user/item relationships on different aspects. Then we conduct the training procedure by randomly dropping out some user-item interactions in the encoder while forcing the decoder to use these limited views to recover the full views, including the missing ones. In this way, the complementary representations for both users and items are more informative and robust to adjust to cold-start scenarios. Moreover, the decoder's reconstruction goals are multi-view user-user and item-item relationship graphs rather than the original input graphs, which make the features of similar users (or items) in the meta-paths closer together. Finally, we adopt a Bayesian task weight learner to balance multi-view graph reconstruction objectives automatically. Extensive experiments on both public benchmark datasets and a large-scale industry dataset WeChat Channel demonstrate that MvDGAE significantly outperforms the state-of-the-art recommendation models in various cold-start scenarios. The case studies also illustrate that MvDGAE has potentially good interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助多情老三采纳,获得10
刚刚
125mmD91T完成签到,获得积分10
刚刚
3秒前
英姑应助Chuwei采纳,获得10
4秒前
momo发布了新的文献求助10
5秒前
dennisysz完成签到,获得积分10
5秒前
愤怒的凤发布了新的文献求助10
5秒前
泉竹晓筱完成签到,获得积分10
7秒前
一行白鹭发布了新的文献求助20
8秒前
11秒前
乐乐应助专一的怀绿采纳,获得10
11秒前
潇洒闭月完成签到,获得积分10
12秒前
13秒前
动漫大师发布了新的文献求助10
14秒前
14秒前
Chuwei完成签到 ,获得积分10
15秒前
15秒前
汉堡包应助山高采纳,获得10
16秒前
满当当发布了新的文献求助10
17秒前
Leee完成签到,获得积分20
18秒前
一行白鹭完成签到,获得积分20
18秒前
飘雪发布了新的文献求助20
18秒前
18秒前
18秒前
Xxynysmhxs完成签到 ,获得积分10
19秒前
Chuwei发布了新的文献求助10
19秒前
111完成签到,获得积分10
19秒前
柯南发布了新的文献求助10
20秒前
调皮盼烟发布了新的文献求助10
20秒前
22秒前
23秒前
脑洞疼应助ff采纳,获得30
24秒前
TOW应助Solar energy采纳,获得10
24秒前
英俊延恶发布了新的文献求助20
25秒前
CipherSage应助满当当采纳,获得10
26秒前
害怕的夏蓉完成签到,获得积分20
27秒前
NANA发布了新的文献求助10
27秒前
CYAA完成签到,获得积分10
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780146
求助须知:如何正确求助?哪些是违规求助? 3325451
关于积分的说明 10223189
捐赠科研通 3040655
什么是DOI,文献DOI怎么找? 1668944
邀请新用户注册赠送积分活动 798878
科研通“疑难数据库(出版商)”最低求助积分说明 758623