已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning for crop yield prediction in the past or the future

人工神经网络 DSSAT公司 随机森林 机器学习 计算机科学 数据集 作物产量 算法 均方误差 数据挖掘 人工智能 数学 统计 农学 生物
作者
Alejandro Morales,Francisco J. Villalobos
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:14 被引量:69
标识
DOI:10.3389/fpls.2023.1128388
摘要

The use of ML in agronomy has been increasing exponentially since the start of the century, including data-driven predictions of crop yields from farm-level information on soil, climate and management. However, little is known about the effect of data partitioning schemes on the actual performance of the models, in special when they are built for yield forecast. In this study, we explore the effect of the choice of predictive algorithm, amount of data, and data partitioning strategies on predictive performance, using synthetic datasets from biophysical crop models. We simulated sunflower and wheat data using OilcropSun and Ceres-Wheat from DSSAT for the period 2001-2020 in 5 areas of Spain. Simulations were performed in farms differing in soil depth and management. The data set of farm simulated yields was analyzed with different algorithms (regularized linear models, random forest, artificial neural networks) as a function of seasonal weather, management, and soil. The analysis was performed with Keras for neural networks and R packages for all other algorithms. Data partitioning for training and testing was performed with ordered data (i.e., older data for training, newest data for testing) in order to compare the different algorithms in their ability to predict yields in the future by extrapolating from past data. The Random Forest algorithm had a better performance (Root Mean Square Error 35-38%) than artificial neural networks (37-141%) and regularized linear models (64-65%) and was easier to execute. However, even the best models showed a limited advantage over the predictions of a sensible baseline (average yield of the farm in the training set) which showed RMSE of 42%. Errors in seasonal weather forecasting were not taken into account, so real-world performance is expected to be even closer to the baseline. Application of AI algorithms for yield prediction should always include a comparison with the best guess to evaluate if the additional cost of data required for the model compensates for the increase in predictive power. Random partitioning of data for training and validation should be avoided in models for yield forecasting. Crop models validated for the region and cultivars of interest may be used before actual data collection to establish the potential advantage as illustrated in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sisi发布了新的文献求助10
刚刚
_glimmer完成签到,获得积分10
3秒前
3秒前
打打应助zianlai采纳,获得10
3秒前
4秒前
5秒前
5秒前
7秒前
思思完成签到 ,获得积分10
7秒前
9778完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
10秒前
DouBo完成签到,获得积分10
10秒前
吃猫的鱼发布了新的文献求助10
10秒前
陈文学发布了新的文献求助10
10秒前
xcwy发布了新的文献求助10
10秒前
christine发布了新的文献求助10
11秒前
12秒前
子衿发布了新的文献求助10
12秒前
852应助XS_QI采纳,获得10
14秒前
紫愿完成签到 ,获得积分10
14秒前
9778发布了新的文献求助10
14秒前
qianyuan发布了新的文献求助10
14秒前
15秒前
左手树发布了新的文献求助10
15秒前
核电机组完成签到 ,获得积分10
16秒前
ecko发布了新的文献求助10
16秒前
慈祥的枫完成签到,获得积分10
17秒前
谨慎晓灵完成签到 ,获得积分20
21秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
衣吾余应助谢XX采纳,获得10
25秒前
NexusExplorer应助堪冥采纳,获得10
27秒前
活泼的晓露完成签到,获得积分10
28秒前
xtjiang发布了新的文献求助10
29秒前
斯文败类应助LEO謙采纳,获得10
29秒前
刘子完成签到,获得积分10
30秒前
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042373
求助须知:如何正确求助?哪些是违规求助? 3580100
关于积分的说明 11382839
捐赠科研通 3308423
什么是DOI,文献DOI怎么找? 1820527
邀请新用户注册赠送积分活动 893416
科研通“疑难数据库(出版商)”最低求助积分说明 815590