Magnetic Resonance Spectroscopy Quantification Aided by Deep Estimations of Imperfection Factors and Macromolecular Signal

核磁共振 光谱学 信号(编程语言) 高分子 信号处理 共振(粒子物理) 核磁共振波谱 磁共振成像 材料科学 生物系统 计算机科学 物理 电子工程 化学 工程类 原子物理学 数字信号处理 生物 医学 程序设计语言 生物化学 量子力学 放射科
作者
Dicheng Chen,Meijin Lin,Huiting Liu,Jiayu Li,Yirong Zhou,Taishan Kang,Liangjie Lin,Zhigang Wu,Jiazheng Wang,Li Jing,Jianzhong Lin,Xi Chen,Di Guo,Xiaobo Qu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 1841-1852 被引量:2
标识
DOI:10.1109/tbme.2024.3354123
摘要

Objective: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of non-ideal acquisition conditions, and interference with strong background signals mainly from macromolecules. The most popular method, LCModel, adopts complicated non-linear least square to quantify metabolites and addresses these problems by designing empirical priors such as basis-sets, imperfection factors. However, when the signal-to-noise ratio of MRS signal is low, the solution may have large deviation. Methods: Linear Least Squares (LLS) is integrated with deep learning to reduce the complexity of solving this overall quantification. First, a neural network is designed to explicitly predict the imperfection factors and the overall signal from macromolecules. Then, metabolite quantification is solved analytically with the introduced LLS. In our Quantification Network (QNet), LLS takes part in the backpropagation of network training, which allows the feedback of the quantification error into metabolite spectrum estimation. This scheme greatly improves the generalization to metabolite concentrations unseen in training compared to the end-to-end deep learning method. Results: Experiments show that compared with LCModel, the proposed QNet, has smaller quantification errors for simulated data, and presents more stable quantification for 20 healthy in vivo data at a wide range of signal-to-noise ratio. QNet also outperforms other end-to-end deep learning methods. Conclusion: This study provides an intelligent, reliable and robust MRS quantification. Significance: QNet is the first LLS quantification aided by deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华天九四发布了新的文献求助20
刚刚
1秒前
Ava应助幻天游采纳,获得10
1秒前
WUXUEJIAO发布了新的文献求助10
1秒前
1秒前
hayley完成签到,获得积分10
1秒前
沉默高跟鞋完成签到,获得积分10
2秒前
Orange应助天才蚂蚁采纳,获得10
2秒前
3秒前
zjm发布了新的文献求助10
5秒前
6秒前
明月完成签到,获得积分10
6秒前
zyzhnu完成签到,获得积分10
6秒前
安xx完成签到 ,获得积分10
6秒前
FashionBoy应助做好自己采纳,获得10
6秒前
6秒前
尘林完成签到,获得积分10
7秒前
在水一方应助尛森采纳,获得10
8秒前
8秒前
123发布了新的文献求助10
9秒前
脑洞疼应助windows采纳,获得10
10秒前
我是老大应助钩子89采纳,获得10
11秒前
思源应助zjm采纳,获得10
11秒前
XXXXXX发布了新的文献求助10
11秒前
悠悠应助科研通管家采纳,获得10
12秒前
FashionBoy应助改改采纳,获得10
12秒前
小杭76应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
小杭76应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Mic应助科研通管家采纳,获得10
12秒前
小杭76应助科研通管家采纳,获得10
12秒前
小杭76应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
ZOE应助科研通管家采纳,获得100
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
ZOE应助科研通管家采纳,获得150
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429055
求助须知:如何正确求助?哪些是违规求助? 4542625
关于积分的说明 14181735
捐赠科研通 4460343
什么是DOI,文献DOI怎么找? 2445678
邀请新用户注册赠送积分活动 1436859
关于科研通互助平台的介绍 1414080