Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients

列线图 医学 比例危险模型 肿瘤科 队列 回顾性队列研究 监测、流行病学和最终结果 肝细胞癌 内科学 生存分析 预后变量 预测模型 流行病学 癌症登记处 总体生存率
作者
Jiaxuan Sun,Lei Huang,Yahui Liu
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (9) 被引量:2
标识
DOI:10.1002/jgm.3732
摘要

Abstract Objectives This study aims to develop and validate machine learning–based diagnostic and prognostic models to predict the risk of distant lymph node metastases (DLNM) in patients with hepatocellular carcinoma (HCC) and to evaluate the prognosis for this cohort. Design Utilizing a retrospective design, this investigation leverages data extracted from the Surveillance, Epidemiology, and End Results (SEER) database, specifically the January 2024 subset, to conduct the analysis. Participants The study cohort consists of 15,775 patients diagnosed with HCC as identified within the SEER database, spanning 2016 to 2020. Method In the construction of the diagnostic model, recursive feature elimination (RFE) is employed for variable selection, incorporating five critical predictors: age, tumor size, radiation therapy, T‐stage, and serum alpha‐fetoprotein (AFP) levels. These variables are the foundation for a stacking ensemble model, which is further elucidated through Shapley Additive Explanations (SHAP). Conversely, the prognostic model is crafted utilizing stepwise backward regression to select pertinent variables, including chemotherapy, radiation therapy, tumor size, and age. This model culminates in the development of a prognostic nomogram, underpinned by the Cox proportional hazards model. Main outcome measures The outcome of the diagnostic model is the occurrence of DLNM in patients. The outcome of the prognosis model is determined by survival time and survival status. Results The integrated model developed based on stacking demonstrates good predictive performance and high interpretative variability and differentiation. The area under the curve (AUC) in the training set is 0.767, while the AUC in the validation set is 0.768. The nomogram, constructed using the Cox model, also demonstrates consistent and strong predictive capabilities. At the same time, we recognized elements that have a substantial impact on DLNM and the prognosis and extensively discussed their significance in the model and clinical practice. Conclusion Our study identified key predictive factors for DLNM and elucidated significant prognostic indicators for HCC patients with DLNM. These findings provide clinicians with valuable tools to accurately identify high‐risk individuals for DLNM and conduct more precise risk stratification for this patient subgroup, potentially improving management strategies and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小鲨鱼完成签到,获得积分10
刚刚
会爬树的鱼完成签到,获得积分10
1秒前
jack完成签到 ,获得积分10
1秒前
研友完成签到,获得积分10
1秒前
冷酷鱼完成签到 ,获得积分10
1秒前
清秀不言完成签到 ,获得积分10
2秒前
2秒前
lvlv发布了新的文献求助10
2秒前
小Q完成签到,获得积分10
3秒前
萧瑟处完成签到,获得积分10
4秒前
Kim_发布了新的文献求助10
4秒前
彭于彦祖应助376364743采纳,获得10
4秒前
高高电灯胆完成签到,获得积分10
5秒前
Hello应助深竹月采纳,获得10
5秒前
舒心之云完成签到,获得积分10
6秒前
合适台灯完成签到,获得积分10
6秒前
英俊的铭应助kyJYbs采纳,获得10
6秒前
Turew应助liutuotuo采纳,获得50
6秒前
8秒前
小可爱完成签到,获得积分10
8秒前
liuz完成签到,获得积分0
9秒前
安之完成签到,获得积分10
9秒前
10秒前
zhoulu关注了科研通微信公众号
11秒前
JamesPei应助yyk采纳,获得10
11秒前
07734完成签到,获得积分10
11秒前
丘比特应助yyymmma采纳,获得10
12秒前
11哥完成签到,获得积分10
12秒前
心想事陈完成签到,获得积分10
12秒前
彭于彦祖应助清修采纳,获得20
12秒前
12秒前
13秒前
shuofeng完成签到 ,获得积分10
13秒前
勤恳化蛹完成签到 ,获得积分10
13秒前
朔流而上完成签到,获得积分10
13秒前
大个应助2021采纳,获得10
15秒前
等待冬亦完成签到,获得积分10
15秒前
lvlv完成签到,获得积分10
15秒前
恩雅完成签到,获得积分10
15秒前
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806