Differentiation of malignant from benign pleural effusions based on artificial intelligence

医学 雅卡索引 胸腔积液 Sørensen–骰子系数 接收机工作特性 队列 人工智能 分割 放射科 内科学 模式识别(心理学) 图像分割 计算机科学
作者
Sufei Wang,Xueyun Tan,Piqiang Li,Qianqian Fan,Hui Xia,Shan Tian,Feng Pan,Na Zhan,Rong Yu,Liang Zhang,Yanran Duan,Juanjuan Xu,Yanling Ma,Wenjuan Chen,Yan Li,Zilin Zhao,Chaoyang Liu,Qingjia Bao,Lian Yang,Yang Jin
出处
期刊:Thorax [BMJ]
卷期号:78 (4): 376-382 被引量:10
标识
DOI:10.1136/thorax-2021-218581
摘要

Introduction This study aimed to construct artificial intelligence models based on thoracic CT images to perform segmentation and classification of benign pleural effusion (BPE) and malignant pleural effusion (MPE). Methods A total of 918 patients with pleural effusion were initially included, with 607 randomly selected cases used as the training cohort and the other 311 as the internal testing cohort; another independent external testing cohort with 362 cases was used. We developed a pleural effusion segmentation model (M1) by combining 3D spatially weighted U-Net with 2D classical U-Net. Then, a classification model (M2) was built to identify BPE and MPE using a CT volume and its 3D pleural effusion mask as inputs. Results The average Dice similarity coefficient, Jaccard coefficient, precision, sensitivity, Hausdorff distance 95% (HD95) and average surface distance indicators in M1 were 87.6±5.0%, 82.2±6.2%, 99.0±1.0%, 83.0±6.6%, 6.9±3.8 and 1.6±1.1, respectively, which were better than those of the 3D U-Net and 3D spatially weighted U-Net. Regarding M2, the area under the receiver operating characteristic curve, sensitivity and specificity obtained with volume concat masks as input were 0.842 (95% CI 0.801 to 0.878), 89.4% (95% CI 84.4% to 93.2%) and 65.1% (95% CI 57.3% to 72.3%) in the external testing cohort. These performance metrics were significantly improved compared with those for the other input patterns. Conclusions We applied a deep learning model to the segmentation of pleural effusions, and the model showed encouraging performance in the differential diagnosis of BPE and MPE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阴阳饱饱完成签到,获得积分20
1秒前
zhoujinhua完成签到,获得积分10
2秒前
buyisung完成签到 ,获得积分10
2秒前
酷波er应助钰LM采纳,获得10
3秒前
4秒前
杨幂发布了新的文献求助10
5秒前
大白包子李完成签到,获得积分10
6秒前
6秒前
赵楠完成签到 ,获得积分10
6秒前
10秒前
六六六发布了新的文献求助30
12秒前
13秒前
杨幂完成签到,获得积分10
15秒前
开心雨发布了新的文献求助10
16秒前
Yi发布了新的文献求助10
19秒前
霍三石完成签到,获得积分10
19秒前
ygp完成签到 ,获得积分10
19秒前
22秒前
无限毛豆完成签到 ,获得积分10
23秒前
糖炒李子完成签到 ,获得积分10
24秒前
25秒前
Raine完成签到,获得积分10
26秒前
27秒前
28秒前
平淡的翠霜完成签到,获得积分10
28秒前
无花果应助小西米采纳,获得10
29秒前
洁净的冰绿完成签到,获得积分10
29秒前
30秒前
yyymmma发布了新的文献求助10
30秒前
乱武完成签到,获得积分20
31秒前
llchen完成签到,获得积分0
32秒前
新威宝贝发布了新的文献求助10
33秒前
和谐沛芹发布了新的文献求助10
34秒前
song完成签到,获得积分10
34秒前
35秒前
Akim应助赵懂采纳,获得10
35秒前
李健的小迷弟应助eurus采纳,获得10
36秒前
ChiHiRo9Q应助绮户流年采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852