A Novel Framework for Heterogeneity Decomposition and Mechanism Inference in Spatiotemporal Evolution of Groundwater Storage: Case Study in the North China Plain

推论 地下水 中国 分解 机制(生物学) 环境科学 水文学(农业) 水资源管理 地质学 地理 岩土工程 计算机科学 生态学 人工智能 考古 哲学 认识论 生物
作者
Xiaowei Zhao,Ying Yu,Jianmei Cheng,Kuiyuan Ding,Yiming Luo,Kun Zheng,Xian Yang,Yihang Lin
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (12)
标识
DOI:10.1029/2023wr036102
摘要

Abstract Properly understanding the evolution mechanisms of groundwater storage anomaly (GWSA) is the basis of making effective groundwater management strategies. However, current analysis methods cannot objectively capture the spatiotemporal evolution characteristics of GWSA, which might lead to erroneous inferences of the evolution mechanisms. Here, we developed a new framework to address the challenge of spatiotemporal heterogeneity in the GWSA evolution analysis. It is achieved by integrating the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), and the Optimal Parameters‐based Geographical Detector (OPGD). In the case study of the North China Plain (NCP), the GWSA time series is divided into four stages by three trend change points in BEAST. An increasing trend of GWSA is observed at Stage IV, and the third trend change point occurs before the third seasonal change point. This distinguishes the positive feedback of anthropogenic interventions and the effects of seasonal precipitations for the first time. Moreover, the spatial distribution of GWSA in the NCP is classified into two clusters by BIRCH in each stage. The differences in GWSA trends and responses to environmental changes between Cluster‐1 and Cluster‐2 are significant. Then the driving effects of 16 factors on the evolution of GWSA are identified using OPGD, in which the contributions of topographic and aquifer characteristics are highlighted by quantitative analysis. This framework provides a novel method for examining the spatiotemporal heterogeneity of GWSA, which can be extended to analyze spatiotemporal trends in GWSA at diverse scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助ddfighting采纳,获得10
1秒前
5秒前
遗迹小白完成签到,获得积分10
5秒前
吃鱼完成签到 ,获得积分10
9秒前
浩浩桑完成签到,获得积分20
9秒前
共享精神应助zzzz采纳,获得10
9秒前
SciGPT应助你好灰太狼采纳,获得10
11秒前
13秒前
13秒前
15秒前
wonder123发布了新的文献求助10
18秒前
嫁个养熊猫的完成签到 ,获得积分10
18秒前
YJ发布了新的文献求助10
20秒前
研友_VZG7GZ应助鱿小鱼采纳,获得30
20秒前
22秒前
jiesenya发布了新的文献求助10
22秒前
24秒前
25秒前
文艺代灵发布了新的文献求助10
25秒前
wonder123完成签到,获得积分10
27秒前
27秒前
SYLH应助雪凝清霜采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
31秒前
念梦完成签到,获得积分10
32秒前
小马甲应助彩虹糖采纳,获得10
32秒前
33秒前
落寞的发卡完成签到,获得积分10
34秒前
Surly完成签到,获得积分10
34秒前
猇会不会发布了新的文献求助10
35秒前
36秒前
一一应助漂亮的忆文采纳,获得10
36秒前
37秒前
英姑应助li采纳,获得10
38秒前
科研通AI5应助支雨泽采纳,获得10
38秒前
liumx发布了新的文献求助10
40秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829306
求助须知:如何正确求助?哪些是违规求助? 3371976
关于积分的说明 10470185
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770805