The Influence of Different Factors on the Thermal Stress of Ladle Lining Under Typical Working Conditions

作者
Haozhu Wang,Lichuan Ning,Juntong Yun,Bo Tao,Ying Liu,J. J. Fan,Baojia Chen,Jia Meng,Zhongping Yuan,Ying Sun
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (25-26)
标识
DOI:10.1002/cpe.70373
摘要

ABSTRACT The ladle is a critical piece of equipment for transporting high‐temperature molten steel in the steelmaking process, and its operational performance directly impacts the quality of the final product, energy efficiency, and overall production costs. With the advancement of continuous casting and external refining technologies, the stability of ladles under high‐temperature and high‐intensity service conditions faces increasingly stringent demands, particularly as the issue of thermal stress damage to the refractory lining becomes more pronounced. Based on typical steelmaking conditions, this study establishes a multi‐stage service cycle model for a 350‐ton ladle. Utilizing a parameterized finite element approach, we conduct a coupled transient thermo‐mechanical simulation to analyze the temperature and stress fields, specifically investigating the synergistic effects of thermal expansion, temperature gradient, and ferrostatic pressure. The results demonstrate that thermal stress is the predominant factor responsible for lining damage. Notably, the thermal expansion behavior of the refractory materials exerts a significant influence on the distribution and magnitude of thermal stress within the ladle structure. In contrast, mechanical loads such as the static pressure from the molten steel contribute minimally to the overall stress state. Furthermore, the study reveals that the stress on the ladle shell significantly reduces after the refractory lining fails and expansion pressure diminishes, quantitatively highlighting the critical role of interfacial expansion constraints. This research provides a comprehensive theoretical foundation and valuable engineering insights for the optimized design and longevity enhancement of ladle lining structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖灰元元完成签到 ,获得积分10
2秒前
故意的书本完成签到 ,获得积分10
4秒前
laber应助科研通管家采纳,获得50
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
laber应助科研通管家采纳,获得50
10秒前
豆豆完成签到,获得积分10
12秒前
li完成签到 ,获得积分10
12秒前
长情琦完成签到 ,获得积分10
12秒前
徐逸斌完成签到 ,获得积分10
14秒前
20秒前
xiangyu完成签到,获得积分20
20秒前
SisiZheng发布了新的文献求助30
25秒前
misa完成签到 ,获得积分10
26秒前
15987完成签到,获得积分10
28秒前
wzhang完成签到,获得积分10
28秒前
ChemHu完成签到,获得积分10
30秒前
乐观的问兰完成签到 ,获得积分10
32秒前
优美短靴完成签到 ,获得积分10
33秒前
赘婿应助decade采纳,获得10
35秒前
SisiZheng完成签到,获得积分10
37秒前
江知之完成签到 ,获得积分0
40秒前
务实的一斩完成签到 ,获得积分10
43秒前
48秒前
Oliver完成签到 ,获得积分10
49秒前
decade发布了新的文献求助10
55秒前
我爱吃菜发布了新的文献求助10
56秒前
houxy完成签到 ,获得积分10
57秒前
乐乐应助个性紫雪采纳,获得10
57秒前
1分钟前
zhuxing完成签到 ,获得积分10
1分钟前
埃特纳氏完成签到 ,获得积分0
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
cox完成签到 ,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
崔崔发布了新的文献求助10
1分钟前
decade完成签到,获得积分10
1分钟前
dingdign完成签到,获得积分10
1分钟前
ru完成签到 ,获得积分10
1分钟前
ho发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293935
求助须知:如何正确求助?哪些是违规求助? 4443973
关于积分的说明 13831812
捐赠科研通 4327924
什么是DOI,文献DOI怎么找? 2375804
邀请新用户注册赠送积分活动 1371055
关于科研通互助平台的介绍 1336111